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Abstract

Many of the most commonly used rainfall-runoff computer programs involve runoff generation and flood hydrograph routing
algorithms that reduce into Toeplitz matrix systems (see Hromadka IT and Whitley, 2000, ASCE Journal of Hydrolic Engineering,
submitted for publication), A link-node model representation of the watershed is constructed by subdividing the watershed into
numerous subareas, and connecting the subareas by a network of hydrologic routing links (using Muskingum, convex, convolution,
or pure translation methods). The U.S. Army Corps of Engineers Hydrologic Engineering Center’'s computer program HEC-1, or
related programs, is used to implement the details of the link-node modeling.

In contrast, the single-area unit hydrograph model approach represents a watershed as a single subarea, and utilizes a single unit
hydrograph to represent all the effects being modeled by a link-node model representation.

The system of Toeeplitz matrices developed in Hromadka II and Whitley (2000) precisely describes the single-area and link-node
model structures as they are actually applied; namely, in discretized timestep unit period additions and multiplications. It was shown
that the single-area unit hydrograph model structure similar to the link-node unit hydrograph model structure; namely, both structures
are Toeplitz matrix systems of the same dimension. It was also shown that the calibrated single-area unit hydrograph model Toeplitz
matrices which are developed by direct calibration to gauged data achieves the minimum variance between the model structure and
the available rainfall-runoff data.

In this paper, a computer program is presented that implements the procedures presented in Hromadka II and Whitley (2000)

for optimizing the unit hydrograph method. © 2000 Elsevier Science Ltd. All rights reserved.
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Software availability

Name of software: MATHEMATICA  for
Runoff Model

Developer: T. V. Hromadka 11

Contact address; Department of Mathematics, Califor-
nia State University, Fullerton, CA 92634, USA

First available: December 1997

Program language: MATHEMATICA

Hardware requirement: IBM PC or compatible

Cost: none

Rainfall-

1. Introduction

The purpose of this paper is to document the develop-
ment of a computer code which (1) calibrates the single-

* Tel: +1-714-755-5380; fax: +1-714-979-9975.

area unit hydrograph model Toeplitz matrix system (as
developed in Hromadka II and Whitley, 2000} for a spe-
cific watershed based on historical rainfall-runoff data
for ns storms, where as is the number of historical rain-
fall-runoff storm events used to calibrate the unit hydro-
graph model Toeplitz matrix system;, and (2) develops a
Toeplitz correction matrix for each storm event con-
tained in the data set. The calibrated single-area unit
hydrograph model and the ns correction matrices can
then be used as the “best estimator model” for an
approximation of the stochastic distribution of runoft
hydrograph realizations for an assumed rainfall event
(i.e., a forecast) for the subject watershed. In Hromadka
II and Whitley (2000), the mathematical underpinnings
of the classical rainfall-runoff unit hydrograph method
are presented, including a generalized procedure to
resolve the catchment response function, or unit hydro-
graph. In the current paper, a Mathematica code is
presented to implement the procedures developed in
Hromadka II and Whitley (2000).

1364-8152/00/% - see front matter © 2000 Elsevier Science Lid. All rights reserved.
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A format for the rainfall-runoff data for the ns storms
is described. The computer program reads the input data,
organizes and stores the data, and calculates the neces-
sary model matrices and vectors as output.

Mathematica Version 3 is well suited for all these
tasks, and was selected for this computer code appli-
cation. All specific built-in Mathematica code objects
vsed are described in Wolfram (1996).

The specific mathematical equations and operations
which are used are described in Section 2. The
developed computer code and instructions for its use are
provided throughout the text. The input and output for
a test case with three storms is also provided in the text
of this paper. The upfront code needed to manage the
program is given in Appendix A.

2. Discussion

The basic equation, for each storm 7, used to calculate
the “best estimator model” matrices is:

Q=T NP, ~ ol B ()

where (' is the vector representation (a nrxl column
vector) of the measured storm runoff for storm i; [T7]
is a ntxnr Toeplitz correction matrix for storm { runoff
estimate, iy (/] is a single-area calibrated unit hydro-
graph model np<nt Toeplitz matrix structure (the same
for each storm); £} is a vector representation (a nrx!
column vector) of the gauged precipitation for storm /;
[Ful is a nexar Toeplitz matrix representation of the
watershed losses (the same for each storm). In this pro-
gram, the watershed loss function is assumed to be a
distributed phi-index loss (¢); {see Hromadka Il and
Whitley (1989) for details]; B is a vector representation
(a nrxl column vector) of the base flow, which is the
same for cach storm, B=h3,; §}, is a unit pulse vector
(a nrx1 column vector) for storm {, where the values of
rows 1 1o k; are 1, and the values of rows k+1 to st are
0, and k, is the non-zero length of the rainfall precipi-
tation vector of storm i.

In this paper, the base flow (b, and B) arc assumed
to he zero, where b, is a selected constant baseflow
(assumed to be zero in this report). The Q4. Py, and
&} column vectors, each having a standardized length of
nt, are formed from the input data as discussed in Section
3. In the above, nr is the length of the longest
precipitationfrunotf input record in all of the storm
events used to calibrate the unit hydrograph model Toe-
plitz atrix system. A key assomption is made that the
elements of the P} vectors are greater or equal to the ¢
index loss function so that the effective rainfall (rainfall
less losses) has positive and nonzero values.

The [7] matrix is initially set to be the identity matrix
for the calibration of the “best estimator model”. Cali-
brated [U,], [Fy] matrices (which are held identical for

each storm), are computed during this step. The least
squares minimization is performed simultanecusly with
respect to all storm events and the a7 components of both
LUy} and [F,], respectively, using a singular-value
decomposition method. The details of this process are
discussed in the Section 4.

The [T} correction matrix is then computed individu-
ally for each storm by solving Eq. (1), using a forward
substitution method. The details of this step are
addressed in Section 5.

The set of calculated [U/;], [Fy), and [7*] matrices col-
lectively define the “best estimator model” for the sub-
ject watershed. The use of this model is discussed in
Section 6. Each of these model matrices has the form of
ntxnt lower triangular Toeplitz matrix:

a, 0 0 e e e ()
G, @, 0O v e e ()
[Al=|as a2 a2 oo 0 (2)
 osses ss  ae e e ()
A oy Gy *° *° % 4,

where the ¢, are real constants; i=1, 2, 3, ..., nl.
Lower triangular Toeplitz matrices have the follow-
ing properties:

(a) It A and B are nrxut Toeplitz matrices and ¢ and
b are scalars, then aA+6B is also a Toeplitz matrix.

{b) The product of two nfxnt Toeplitz matrices is a
Toeplitz matrix, and the product is commutative.

{c) If a Toeplitz matrix 1s nonsingular, then its inverse
is a Toeplitz matrix.

(d) If A is a Toeplitz matrix of order ntxnt and B is
a column vector of the following form:

b b 0
b, by by
b; b, b,
B= ol then A-B=q, . +a, w 3)
b... by, B
0
0 Q0
T iy il +...+a,, .
Dpa b

(e) If A, B, and U are Toeplitz matrices of the same
order and A=U-B, then A=U/-B where 4 and B are the
first column vectors of A and B, respectively.
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3. Computer program: reading and processing of
input

Rainfall-runoff data for a number of storms, rs, are
used to calibrate the model for a specific watershed. A
sample input for a three-storm calibration (see Table 1),
along with the corresponding Marhematica code, is as
follows:

3.1, Test case (with three storms)

Preliminary setupTable 1
SetDirectory [“C:\My Documents™]
C: \My Documents
I stormtest].txt

Storms 3

Begin storm | Intervals 8

Interval Precip Runoff
1 2. 0

2 5 2

3 10 3

4 4 6

5 i 4

0 0 2

7 0 i

8 0 ]

Engd Storm 1

Begin storm 2 Intervals 6

Interval Precip Runoff
1 1 0

2 3 0

3 4 ]

4 2 3

5 0 2

& 0 2

End Storm 2

Begin Storm 3 Intervals 7

Interval Precip Runoft
| 1 0

Table 1

Three-storm calibration test data®

~1 O B
o BN en i =R U5 e Qo )
— A = D

End Storm 3
End of File

3.2, Compurer code and output

nt=8;
Stormdata=QpenRead] stormtest] .txt”]
Skip|stormdata, Word}; ns=Read|stormdata, Number};

pg=Table[0, {i, ns}, {j, nt}];
gm=Tablel0, {i, ns}, {j. nt}[;
kri=Table[0, {ns}];
fmv=Tablel0, {i, ns}, {j, nt}];
For[h=1, h=ns, h++,
Skip[stormdata, {Word, Word}]; st=Read[stormdata,
Numberl];
Skip[stormdata, Word]; ni=Read[stormdata, Number];
Skip[stormdata, {Word, Word, Word}];
temp=ReadList{stormdata, {Number, Number, Number},
niJ;
Skip[stormdata, { Word, Word, Number});
trantemp=Transpose [temp];
pelhl}=Flaten{trantempl[2]1};
For[i=ni+1, i=nt, i++, pg[[h]}=Append[pg[{h]], O1};
pe[[h1}=Flatten[pg[[h]1];
lis=pg{[h]]; mar=h; kr=1;

Label[beginning]; [lis[kr]]1#0, ke=kr+1, Gotofnext-

linell
If [kr=nt, Goto[beginning], Goto[nextline]];
Label[nextline]; kri[[mar]]=kr—1;
qm[[h]]=Fiatten{trantemp([3]]];
For[i=ni+1, i=nt, i++ gm[[h]]=Append[qm[[h]],0]];

Begin storm | Begin storm 2

Begin storm 3

Tnterval Precip Runoff Interval Precip Runoff Interval Precip Runoff
[ 2. Q. 1 L. 0. I L. 0

2 5. 2. 2 3. 0. 2 6. 0

3 10. 3. 3 4. 1. 3 6. 1

4 4. 6. 4 2. 3 4 3 4

5 1. 4. 5 0. 2 5 0. 5

b 18 2. 6 0. 2. 6 0. 2

7 0. L. End storm 2 7 0. 1

& 0. 1. End storm 3

End storm 1

¢ The actual input format uses a single column with each storm listed sequentially as shown in Section 3.1.
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qm({h]j=Flatten[gm[[h]]]];
Close[stormdata];
toeplitzexpla_]:=
Module[{bt, n}. n=Length[a]; bi=IdentityMatrix[n];
bt[[1]]=Fatten{a];
For[k=2, k=n, k++,
bt[{k]}=Delete[bt[[k —1]], —1];
bt [k]1=Prepend{bt{{ki], O};
bt[[k]]=Flattenfbt[[k]]]]:
Transpose[bt]];

cronk[t_ ]:=Module[{ }, ckv=Table[1, {nt}];
Forli=t+1, 1=nt, i++, ckv=ReplacePart[ckv, 0, 1]]j;

pushdown[a_.c_J:=
Modulet {pdt, n, k}, n=Length{a], pdi=Table{0,{nt}};
pbt=Flatten[a];

For[k=1, k=c, k++,
phi=Delete[pbt, —1]; pbt=Prependpbt, 0]]; pbt=Flat-
ten[pbt]];

gmgsv=Flatten[Table[qm[[i]], {i,ns}]];
mgs=ns nt; ngs=2nt;
agsviran=Table[0, [i,ngs}, {j.mgs}];

For[i=1, i=nt, i++, agsvtran[[i]]=
Flatten[Table[pushdown[pg([31}, i—11, {j, ns}]1};

Forli=1, i=ns, i++, c=kri[[i]]; fmv[[i]]=Table[—1, {nt}];
Forfkd=1, kd=nt—ec, kd++, fmv{[ill=Delete[fmv[[ill,
—11]; For[ka=1, ka=nt—c,
kat++, fovifi]l=Appendifmviiil], O)]; frvili}}=Flat-
ten[fmv([i]]]];

Forli=nt+1, i=2nt, i++, agsvtran([ill=
Flatten[Table[pushdown[fmv[[j]]. i—nt—1}, {j, ns}11;

agsv=Transpose[agsvtran];

a=agsv; at=Transpose[a]; b=qmgsv;

{v, md, v}=SingularValues{a]; ut=Transposefu};
apsu=Pseudolnverse[a];

xcale=apsu.b;

fov=Take[xcalc, —ut];

fo=toeplitzexp[fov];

tivcale=Table[0, {1, ns], 1], nt}l;

For[st=1, st=ns, st++, k=kri[[st]]; cronk([k];
xv=qmist]}+{fo.ckv}; ni=Lengthixv];
yv=uo.pgifst]];

yr=Delete[yv,1]; yr=Flatten[ Append[yr, 0]];
uvcale=Tablel0, {i nt}, {J. 1)

uvcale[|1]]=xv[[1]1/yv[[1]]; utoep=toeplitzexp[uvcale];

For[s=2, s=nt, s++,

Uvealc[[s]]=N{(xv[[s]]1—(utoepl[s — L]].yr) ¥y vi[1]i];
utoep=toeplitzexplovcalc]];

tiveale[|st])=uvcalc];
tivcalctran=Transposeltivcalc);

Print[*“Output”};

Peint“\wn\n U-MATRIX ELEMENTS”}, Print|Matrix-
Form[uov]];

Print[“\min  F-MATRIX ELEMENTS”]; Print|Matrix-
Form[fovll;

Print[*\n\n"];

For[i=1, i=ns, 1+, Prnt{“T-MATRIX ELEMENTS:
STORM”, i];

Print[MatrixForm[tivcalc[[i]1]]];

The unit time period for each storm record must be
identical {(such as 3 nmn). The dimensional units of the
rainfall and runoff should be consistent (e.g., inches}.
Additonally, the initial precipitation value of each storm
record must be nonzero. The remaining input parameter
which must be input into the program is the value of nt,
the greatest number of intervals in the rainfall-runoff
data sets. For the sample input value above, the vaiue
of nr is 8.

The program reads the values of »s and a7, and the
precipitation and runoff data for each storm. Zero
elements are added, as needed, to each precipitation and
runoff vector to produce the £ and ¢ vectors, respect-
ively, which have a standardized length equal to nt, The
values of k; (the non-zero length of the rainfall precipi-
tation vector) and @}, (the n#x1 unit pulse vector for
storm i) are also computed for each storm and stored.

For the sample input above, the value of k; is 3, 4,
and 4 for Storms 1, 2, and 3, respectively. Thus,
recalling #r==8,

1 1
1 1
1 1
_ | ‘ 1
o},= : for storm 1, and 84 = 0 for storms 2 and 3
0 0
0 0
0 0

4. Least squares calibration

To calibrate the “best estimator”, the {T'] matrix is
initially set to be an identity matrix. For this report, the
base flow (b, and B) are assumed to be zero. Therefore,
for calibration Eq. (1) for each storm i can be simplified
as follows:
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Qu=[Uy)PL~[Fyl8], 4)

The [U;) and [F,,] matrices each have the form of a
nrx<nt lower triangular Toeplitz matrix. Specifically,

u, 0 0

Mz Ml 0 e &5 w0 O

ss 20 we ()}

Uz Uy U, e e ()

[UO]: " e [ e we e O ’ and (5)
Upg Uy Upro *% ** *= Uy

10 0 e ve es [)
fzf| 0 s es e ()

3 [ .‘I s se e )
[FM]= {- {- }:t " e es

‘f;xt f;uml f;nf—Z bl .fl'

Thus, using property (d) for Toeplitz matrices, Eq. (4)
for each storm / can be rewritten as follows:

i 0 0
Pi2 Pia 0
IO Rl T L FN L 6)
~ (1] (13 .
. . .
Pint p:,m'*l Pine-2
U _55(,1 0
0 ~0i2 0
0 A -Gks | -8
+it,, . +fi . +15 .
i “éi,m —éfc,m—|
0
=
+f:3 . +...+f;1, .
-_(jg-c,m—z _§£,l

The Qi and P} vectors in Eqgs. (4) and (6) are the
standardized length runoff and rainfall vectors for the ith
storm. The minus signs in the column vectors on the
‘ght side of Eq. (1) account for the minus sign of the
-econd term in Eq. (4). The —&} ; notation, for example,
refers to row 1 of the vector g} .

Let <N> denote the “best estimator” model para-

meter Set: iy, Uy, ..., u,, and f,, f5, ..., f,,. This parameter
set 1s the first column vector components of the [U,] and
[Fwl Toeplitz matrices, and as such they fully define the
[Uy] and [Fy] matrices. The least squares minimization
which solves for <N> is performed simultaneously with
respect to all ns storm events.

To set up the least squares solution two matrices are
constructed, namely @ and 5. The a matrix has 2xat col-
umns, and its first af rows consist of the storm 1 column
vectors on the right side of Eq. (6); the next sz rows
consist of the storm 2 column vectors on the right side
of Eq. (6), etc. for all ns storms.

The overall a matrix therefore has nsxnt rows and
2xnr columns (Tor test case 2, this amounts to 540 rows
and 36 columns). The & mairix has one column, and its
first nr rows consist of the storm 1 Qi; column vector
on the left side of Eq. (4); the next a7 rows consist of
the sterm 2 Q4 column vector on the left side of Eq.
(4), ete. for all ns storms. The overall & matrix therefore
has nsxnt rows and one column (for test case 2, this
amounts to 540 rows and one column). The ¢ and &
matrices for our test case illustrate the results of this
construction technique and are shown below.

Matrix a

MatrixForm([a]

2 00 00 CO0OO0O-10 0 0 0 0 0 0
52 0 0 0 0 6-1-10 0 0 0 0 0
035 2 0 0 000-1-1-100 00 0
4 105 2 0 000-1-1-1-10 020 0
1 4105 2 000-1-1-1-1-10 0 0
O I 4 10 5 2 00 -1 -1 -1 -1 -1 ¢ 0
0O 01 4105 20 -1 -1 -1 -1 -1 0
0O 0 ¢ 1 410520 0 -1 -1 -1 -1 -1
1 0 0 0 0 000 -1 0 0 0 0 0
31 0 0 0 000-1-10 ¢ 0 0
4 3 1 0 0 0 00-1-F -1 0 0 0 0
2 4 3 1 0 000-1-1- -1 0 0 0
0 2 4 3 1 000 -1 -1 -1 -1 0 0 0
0 2 4 3 100 ¢ -1 -1 -1 -1 0 ¢
0 0 0 2 4 310 0 -1 -1 -1 -1 0
C ¢ 0 0 2 4310 -1 -1 -1 -1
I 0 0 0 0 0 00-120 0O 0 0
6 1 0 0 0 ¢ 00-1 -1 0 0 ¢ 0
6 6 1 0 0 ¢ 00 -1 -1-10 o 0 0
36 6 1 0 0 00C-1-1-1 - 0 0 0
0 3 66 1 000O0-1-1-1-10 0 0
6 ¢ 3 6 61 000 0 ~1-1-1-10 0
6 0 0 3 6 06 00 0 0 -1 -1-1-10
0 0 0 0 3 61 0 0 0 0 -1 -1 1 -
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T-MATRIX ELEMENTS: STORM 1
Matrix &
MatrixForm[b] 0.477971
3.84049
’—9.07767

6.9524

15.9601
-53.1656
36.5777

146.075

T-MATRIX ELEMENTS: STORM 2

o R L TS - N o M UL R N T e

0.955942
0.798544
—0.956656
—1.75624
5.57011
=5.17108
-3.15017
27.6918

—

T-MATRIX ELEMENTS: STORM 3

0.955942
—2.06928
11.9428
—58.4268
289.87

. T hval | 1428.35
. vectors and &, values

MatrixForm[pg] 7009.62
MatrixForm[kri] | 34364.8

o B R T e R o S e B B O S N R )

251041000 U-MATRIX ELEMENTS

13 420000

0.312282
16 6 30000

0.284779
0.0360325
0.292765
—0.00308689
0.112265
-0.0270048
—2.49743
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F-MATRIX ELEMENTS

0.298524
1.11865
0.304837
-2.66147
0.0325721
2.24125
0.976995
~5.31615

For[k=2, k=n, k++,
bt[fk]]=Deletefbtl[k-—-1]], —1];
bt|[k]]=Prepend[bt[[k]]. 0],
bt[[k]]=Flatten{bt[[k1111;
Transpose[bt]];
cronk[t_]:=Module[{}, ckv=Table[1, {nt}];
For[i=t+1, i=nt, t++, ckv=ReplacePart[ckv, 0, i]]];
pushdown[a , c_]:=
Module[{pdt, n, k},
{nt}]; pdt=Flatten[a];
Sor[k=1, k=¢, k++,
Pbi=Delete [pbt, - 1]; pbt=Prepend[pbt.0]]; pbt=Flat-
ten[pbt]];

n=Length[a]; pdi=Table[Q,

gqmgsv=Flatten[ Table[qm][[i]], {1, ns}];
mgs=ns nt; ngs=2 nt;
agsvtran=Table[0, {i, ngs), { j, mgs}];

For[i=1, i=nt, i++, agsviran [[i]}=
Flatten[Table[pushdown[pg[[j11. 1]l {j. ns}]];

For[i=1, i=ns, i++, c=kri[[i]]; fmv[[i]]=Table[-1, {nt}];
For[kd=1, kd=nt—c¢, kd++, fmv[[i]]=Delete[fm¥v[[i]],
-—1]]; Forfka=1, ka=nt—c,

kat+, fmv[[i]]=Append[fmv{[i]], 0] ]; fmv[[i]]=Flat-
ten[fmv[[i]]]];

For[i=nt+1, i=2 nt, i++, agsviran[|i]]=
Flatten[Table[pushdown[fmv[[f]], i —nt—1], {j, ns}11];

agsv=Transpose|agsvtran],

a—agsv; at=Transposefa]; b=gqmgsv;

{u, md, v}=SingularValues[a}; ut=Transpose[u];
apsu=Pseudolnverse[a];

xcalc=apsu.b;

1wwv=Take[xcalc, nt];

Jo=toeplitzexp[uov};

fov=Take[xcalc, —nt];

fo=toeplitzexp[fov];

tivcale=Table[0, {i, ns}, {j, nt}];

For[st=1, st=ns, st++, k=kri[[st]]; cronk[k];
xv=qm[[st]J+{fo.ckv); nt=Length[xv];
yv=uo.pg([st]]:

yr=Delete[yv, 1]; yr=Flatten[Append[yr, 0]];
uvcale=Table[0, {i, nt}, {j, 1}];

_o[1] _ .
uveale{[1])=———; utoep=toeplitzexp[uvcalc];

wl[1]]

For[s=2, s=nt, s++,

uvcalc[[s]]=N

xv{[S]]—(MOEP[[S—lJJyr)}_
wIlL

=toeplitzexp[uvcalc]];

The built-in function Singular Values decomposes the a
matrix into three factored matrices (4", my,, and v), where
u" is the transpose of « and my, is a square diagonal
matrix with singular valued elements. The built-in func-
tion pseudo inverse then constructs ¢~ ', the pseudo

inverse of &, using the following equation:

a'=vimgu €)]

where mp! is the inverse of my,.

Then
<N>=>=g'b (8}

The unique, calibrated [U,)] matrix and the [Fy] matrix
defined by the set <<N>> is used for each storm in the
determination of correction matrices as described in the
next section.

5. Computation of correction matrices

Eq. (1), with B=0, is then used individually for each
storm event to calculate the [T correction matrix for the
ith storm; =1, 2, ..., ns. Namely,

G =[TNUe] L~ [Fmlé}, 9)

The ¥, P, 8, vectors in Eq. (9) are the standardized
length runoff, rainfall, and unit pulse vectors for the ith
storm which were formed from the historical storm data
input. The [U;] Toeplitz matrix and the [Fy] Toeplitz
matrix computed in the previous subsection are used for
each storm. Rearrangement of Eq. (9) yields:

Q'+ [Fuldi,=[TILUL)P; (10
Letting A'=Q'+[Fy], §}, and B'={U,]P} then A’=B‘ can
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readily be calculated for each storm as their elements
are known, and the above equation can be rewritten as:

A=[T1B (11

As discussed in Hromadka 11 and Whitley (2000), the
[ '] correction matrix for each storm is a Toeplitz matrix,
and the [T"] matrix is completely defined by its first col-
umn vector, 77,

[T9, in Eq. (11), can be solved for each storm using
forward substitution with the following iterative algor-
ithm:

. e (A
For s=1 [’1=(-B,.) (12)
1

4.9_( qu | giz

For s=2, ... nt T'= -
or s=2,...,nt 7! B

(13)

where T% is the Toepliiz expansion of 7%, (from the
prior iteration), and Bl is 8' with the first element deleted
and a zero appended as the last element. All [7°] matrices
are calculated in this manner.

The set of calculated [U/,], [Fy], and [7] matrices col-
lectively define the “best estimator model” for the sub-
ject watershed, The Mathematica code for the above pro-

cess is given below.
5.1, Description of the computer code

All specific built-in Mathematica code objecis used
are completely described in Wolfram (1996). Each built-
in Mathematica code object begins with a capital letter,
whereas all variable names used in the computer code
begin with a lower case letter.

The following portion of the computer code reads in
the values of ns and sz, as well as the precipitation and
runoff data for each storm. Zero elements are added, as
needed, to each precipitation and runoff vector to pro-
duce the P{ and Q}; vectors, respectively. Each of these
vectors has a standardized length equal to nr. The values
of k; {the non-zero length of the rainfall precipitation
vector) and &} (the nrx1 unit pulse vector for storm i)
are aiso computed for each storm and stored.

nt=8§;
Stormdata= OpenRead[*“historicstormdatal .txt”]
Skip[stormdata, Word); ns=Read[stormdata, Number];

pg=Table[0, {i, ns}, {j, nt}];

gqm=Table[(, {1, ns}, {j, nt}];

kri=Table{0, {ns}];

fmv=Table[0, {i, ns}, {j, nt}}:

For[h=1, h=ns, h++,

Skip[stormdata, {Word, Word}]; st=Read[stormdata,
Numberfj;

Skip[stormdata, Word]; ni=Read[stormdata, Number];

Skip[stormdata, {Word, Word, Word}];
temp=ReadList[stormdata, {Number, Number, Number]
nij;
Skiplstormdata, {Word, Weord, Number}];
trantemp=Transpose[temp];
pgl[hll=Flatten[trantempi[2]}];
For[i=ni+1, i=nt, i++, pgl[h]]=Append[pg[hl], 0]];
pgllhi}=Flatten[pg{thil;
lis=pg[[h]]; mar=h; kr=1:
Label[beginning]; Ifflis[kr])#0, kr=kr+1, Gotofnext-
line]];
Iffkr=nt, Goto[beginning], Goto[nextline]];

Label[nextline); kril[mar]j=kr—1;
gqm([h}]=Flatten[trantemp{[3{1];

For[i=ni+1, i=nt, i++, gm[[h]]=Append{qm[[h]],0]];
gmifh]=Flatten[qm{thj}i;

Close[stormdata):

The following portion of the computer code defines three
program patterns which perform the following func-
tions, respectively:

1. expand a column vector to form its associated Toe-
plitz matrix (the original column vector becomes the
first column vector of its Toeplitz matrix);

2. compute §;. (the next n#x1 unit pulse vector for storm
) for an input value of 1;

3. reforms a column vector by deleting its last ¢
elements and adding ¢ elements with value O at the
top of the vector.

These patierns are used in the subsequent computer
code sections.

Teoplitzexpla_]:=
Module[ {bt,n},
bt[[ 111=Flatten[al;
For[k=2, k=n, k++,
bif [k]j=Delete[bt{{ k- 11}, —1};
bt{[k]]=Prepend[bti[k]], O];
bt[[k]]=Flattenibt{{k]11);
Transpose[bt]];

n=Lengthla];  bt=IdentityMatrix[n];

cronk[t_]:=Module[{ }, ckv=Tabie[l, {nt}];
For[i=t+1, i<{nt, i++, ckv=ReplacePart[ckv, 0, i]]];

pushdown[a_.c_]:=
Module[{pdt, n, ki, n=Lengthlal; pdi=Table[0,{nt}];
pbt=Flatten[a];
Forfk=1, k=c¢, k++,
pbt=Delete[pbt, —1]; pbt=Prepend[pbt, (]]; pbt=Flat-
tenipbt]};

The following portion of the code computes matrices
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a and b which are used to set up the least squares
>lution.

gqmgsv=Flatten[Table|qm]||i]], {i,ns}]];
mgs=ns nt; ngs=2nt;
agsviran=Table[0,{i,ngs}, {j.mgs}];

For[i=1, i=nt, i++, agsvtran|[i]]=
Flatten[Table[pushdown[pgl[j]], i—1], {j, ns}]]];

Forfi=1, i=ns, i++, c=kri[[i]]; fmv[[i]]1=Table[ -1, {nt}];
For[kd=1, kd=nt—c, kd++, fmv[[i]]l=Delete[fmv[[i]],
—1]]: For[ka=1, ka=nt—c,
ka++, fmv[[i]l=Append[fmv([i]]l, OJ; fmv[[i]}=Flat-
ten[fmv[[i]]]1;

For[i=nt+1, 1=<2nt, i++, agsvtran{[1]]=
Flatten[Table[pushdown[fmv[[j]], i—nt —11, {j, ns}]1];

agsv=Transpose[agsvtran];
a=agsv; at=Transpose[a]; b=gmgsv;

The following portion of the code uses a least squares
singular-value decomposition computation to solve for
the first column vector of the [U,] matrix and the [Fy]
matrix.

u, md, v}=SingularValues[a]; ut=Transpose[u];
apsu=PseudolInverse[a];
xcalc=apsu.b;
vov=Take[xcalc, nt];
uo=toeplitzexp[uov];
fov=Take[xcalc, —nt];
fo=toeplitzexp[fov];

The following portion of the code computes [17], the
first column vector of the correction matrix for each
storm, using forward substitution.

tivcale=Table[0, {i, ns}, {j, nt}]:

For[si=1, st=<ns, st++, k=kri[[st]]; cronk[k];
xv=qm{[ [st][+(fo.ckv); nt=Length[xv];
yv=uo.pg[istl};

yr=Delete[yv,1]; yr=Flatten[Append[yr, O]];
uvcale=Table[0, {i nt}, {j, 1}k

uveale] [ ]]=xv][1]]/yv[[1]]; utoep=toeplitzexpfuvcalc];
For[st=2, s=nt, s++,
uveale[[s]]=N[(xv[[s])—(utoep[[s— 11].yr)}yvI[1]]];

utoep=toeplitzexpluvcalc]];

‘veale[{st]}=uvcealc];
ivealetran=Transpose[tivecalc];

The following portion of the code prints the output.

Print[*"Output”];

Print[*\n\n U-MATRIX ELEMENTS”]; Print[Matrix-
Form[uov]];

Print[*\n\n  F-MATRIX ELEMENTS”]; Print[Matrix-
Form[fov]];

Print[“\n\n”];

For[i=1, i=ns, i++, Print(“T-MATRIX ELEMENTS:
STORM”, i];

Print[MatrixForm[avcalc[[i]]]]];

0. Use of the best estimator model

The estimated runoff, Q,,, for an assumed rainfall vec-
tor, £; (and its associated unit pulse vector, §;), for a
specific watershed is then determined using the water-
shed’s “best estimator model” and the following equa-
tions:

QM:{le QZ’-'-‘» Qm} (]4)
where
Q' =T ||Ug]P;—|Ful@; for i=1.2,, .. ns

Thus, the estimated runoff @, is a discrete stochastic
distribution of runoff hydrograph estimates based on the
use of all correction matrices. In Eq. (14), the superscript
asterisk indicates a forecast storm event.

7. Conclusion

A Mathematica computer program has been prepared
which calibrates a unit hydrograph rainfall-runoff model
based on its rainfall-runoff data, and calculates the
walershed’s “best estimator model™ parameters, matrices
[Us], [Ful, and [T

The “best estimator model” can then be used to
approximate the watershed’s runoff hydrograph distri-
bution for an assumed forecast rainfall event. This post
processing could also be programmed with Mathemat-
ica, and the output includes graphs.
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Appendix A
In order to run the computer code using the following

explicit instructions, the following files and folders must
be used.
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The historical storm data is placed in a MicroSoft
Notepad text file, entitled “historicstormdatal.txt”,
which is stored in a folder entitled “My Documents™ on
the “C” drive. The prescribed format for the text file is
illustrated in the text cases. (Note: it is very convenient
to initially prepare a MicroSoft Excel spreadsheet.xls file,
and then name it as a Notepad text file).

The Mathematica file with the computer code is
then opened.

The following two preliminary setup cells, then must
be individually evaluated (by pressing shift and enter
with the cursor positioned at the end of the cell to be
evaluated).

When the second setup cell is evaluated correctly, the
cell output will be a line input listing. (Note: sometimes
the cell wording must be deleted and retyped in order
to activate the cell output).

Change the value of n7 on the first line of the computer
code from 8 to the proper value for the input (highest
value of intervals for all of the input storms).

Execute the computer code by evaluating the ceil in
which the computer code is placed (by pressing shift and
enter with the cursor positioned at the end of the cell).

Preliminary setup

SetDirectory|“C:\My Documents™)
! historicstormdatal .txt

Computer code

ni=_§;
Stormdata=0OpenRead|“historicstormdatal.txt™];
Skip[stormdata, Word]; ns=Read[stormdata, Number];

pg=Table[0, {i, ns}, {j, nt}];

gm=Table[0, {i, ns}, {j, nt}];

kri=Table{0, {ns}];

tmv=Table[0, {i, ns}. {j, nt}];

For[h=1, h=ns, h++,

Skip[stormdata, {Word, Word)]; st=Read|stormdata,
Number];

Skip[stormdata, Word]; ni=Read[stormdata, Number];
Skip[stormdata, {Word, Word, Word});

temp=ReadList[stormdata, {Number, Number, Number ],
nif;

Skip[stormdata, { Word, Word, Number}];
trantemp=Transpose {temp];

uov=Take[xcalc, nt]:
uo=toeplitzexpluov];
tov=Take[xcalc, —nt];
fo=toeplitzexp[fov];

tivcale=Table[(, [, ns}, {j, nt}];

For[st=1, st=ns, st++, k=kri[[st]]; cronk[k];
xv=gm[[st]]+(fo.ckv); ni=Length[xv];
yv=uo.pg[[st]};

yr=Delete[yv,1]; yr=Flaten[Append|[yr, 0]];
uvcale=Table{(, {i nt}, {j, 1}];

wveale[[1]1=xv[[ 111y v[[1]);
utoep=toeplitzexp[uvcalc]];

For[s=2, s=nt, s++,
uvcale[[s]I=N[(xv[[s]]—utoep[[s— 1]).yr)/yvi[11]];
utoep=toeplitzexpluvcalc]];

tivcale[[st]]=uveale];
tivcalctran=Transpose{tivcalc];

Print[“Output™];

Print[*\n\n U-MATRIX ELEMENTS™]; Print{Matrix-
Form[uov]];

Print[“'m\n F-MATRIX ELEMENTS”); Prini[Matrix-
Form|fovl]];

Print[*\n\n"];

For[i=1l, i=ns, i++, Print[“T-MATRIX ELEMENTS:
STORM?”, iJ:

Print[MatrixForm{tivcalc[[i]])]];
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