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Abstract

The Complex Variable Boundary Element Method, or CVBEM, is a two-
dimensional (2D) potential problem numerical approximation technique. In this
paper, the application of the CVBEM towards improving the numerical accuracy
of three-dimensional (3D) numerical methods, in solving 3D potential problems,
is introduced. The provided theoretical approach can be directly extended to
other 2D numerical techniques.

I. Mathematical formulation

Let Qbe a three-dimensional (3D) domain, with boundary T', with coordinates

given for an arbitrary point by (71, T2, 13)-

Consider the 3D potential problem V2¢ = f(t1, 12, 13) on QUI with boundary
conditions of the Dirichlet type (BCs) defined onT by the function ¢p(t1, 12,
73). For a selected coordinate value 13 = 17, the corresponding boundary is the
boundary of a 2D "slice", F(r'3), denoted hereafter as ™', and the corresponding
domain is the interior of the “slice", Q(r‘3), denoted hereafter as Q', with
boundary conditions on I given by ¢p (1, 12). Similarly, for 13 = 1, f(t1, 72,
t'3) ; f(t1, 12). On the domain ', which is subset of Q, we have
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where s is a tangential coordinate along the 3D boundary, I, and is chosen to
include a nonzero T3 component (so as to be outside of the selected 2D slice),

and i is an evaluation point on I', where n evaluation points are used for

numerical integration purposes.

Then, at evaluation point i, we set ¢j+1 — 2¢j + ¢j+1 =M = ‘1".1: - 2q>'i’ + ¢‘i’_l, or
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where A is a square nxn matrix; and <¢P > is a nx1 column vector.
N
But ¢f = Z j&j(pi), such that the coordinate of evaluation point pj is
1
J=l

(t1.72, 13)i- an
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Let functions ¢® and oF satisfy
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Then, on Q'UI™, we can solve the governing 3D partial differential equation
(PDE) by first solving the 2D PDE, '

% , 3% s

— —, = 3 - n P_ P i

P + o 0, withBCso¢b=0b—¢;—¢" onT" (5)
Then, the 3D approximation in Q'UI™, is ® = ; + ¢ff’ +¢F. (6)

II. Numerical modeling approach

This paper's approach to solving (2) is to use a 3D function ¢P of the form

N3
oF= D8, n
j=1 )
where the gj are mutually independent functions such that the 3D Laplacian V?‘gj
— 0. The notation, N3, is the number of 3D nodes that enclose QUI". We select

Cj so that €7 is minimized in the usual residual error sense, where

€1 = i ¢§s — bss I r -

where ¢gs is the tangential second partial derivative of ¢ along Q. Note that s
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But from (11), the column vector of values ¢‘i’ is given by,

[ gip) gp1) <o gnp) 1 [ o
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<¢P> .= [ . . | [« ] (12)
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where n > N.
Then, combining (11) and (12),
<n>px1 = [Alnxn [8(P)InxN <c>Nx 1 (13)

where matrices [A] and [g(p)] are completely determined by the above
definitions, and <c> is to be determined by a least-squares type solution to
minimize the usual residual error norm. Note that <n> = [A]<¢> where <¢> =

(01, ¢2,°@e,¢p). Then, equating matrix relationships,
[Al<¢> = [A] [g(p)]<c> (14)
or, for [A] nonsingular,
<¢> = [g(p)] <c> (15)
which is the typical direct formulation for developing a 3D approximator. Thus,
the standard 3D numerical technique also is a model for estimating ¢ .

2
4

Thus, a typical 3D solution of the LaPlace equation can be directly used as ¢P.

IV. The complex variable boundary element method
(CVBEM)

The CVBEM will be used to develop the 2D approximation, on Q'UI™" according
to (5). Background on the CVBEM is provided in numerous texts and papers
(see references).



Boundary Element Technology =~ 427

V. The 3D model particular solution, ¢P

Given ¢, and ¢, we now develop new BCs along I to be used in solving

for the 2D approximator ¢ by the CVBEM. Note that these new BC
values, onT", is the discrepancy between (0 + ¢7) and ¢ along I".

VI.  Vector space considerations

The ¢P approximator utilizes 3D basis functions of the form gj(t], 12, 13). The
CVBEM utilizes 2D basis functions of the form hj(t1, t2). The linear operator is
L = V2. Then, for any j, and independently,

Lgj=0; Lhj=0.(16)

Recall, Lq;'; =f. Then the basis developed in this numerical approach is B = { gj-
hj; q>’f’ ).

VII. Discussion

In general, accuracy in 3D problems is increased by adding 3D basis functions,

i increases modeling complexity. In our new case, we get another chance
towards reducing modeling error by, in effect, adding additional basis functions
in a 2D subspace of the 3D domain. These additional 2D basis functions can
only help in reducing the overall 3D modeling error, in a least squares sense,
althoug_lé such improvements are seen on a 2D “slice" by “slice" basis.

VII. Conclusions

The Complex Variable Boundary Element Method, or CVBEM, is a two-
dimensional (2D) potential problem numerical approximation technique. In this
paper, the application of the CVBEM towards improving the numerical accuracy
of three-dimensional (3D) numerical methods, in solving 3D potential problems,
is introduced. The theoretical approach provided can be directly extended to
other 2D numerical techniques.
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