C.S. Chen, C.A. Brebbia and D.W. Pepper Editors

WIT_{PRESS}

Boundary Element Technology XIII

Incorporating
Computational Methods and Testing
for Engineering Integrity

Boundary Element Technology XIII

incorporating Computational Methods and Testing for Engineering Integrity

EDITORS:

C.S. Chen
University Nevada, Las Vegas, USA

C.A. Brebbia
Wessex Institute of Technology, UK

D.W. Pepper University Nevada, Las Vegas, USA

Analysis of three-dimensional potential problems using the complex variable boundary element method

T.V. Hromadka II¹

Exponent Failure Analysis Associates, Costa Mesa, California and Department of Mathematics, California State University, Fullerton, California 92634

Abstract

The Complex Variable Boundary Element Method, or CVBEM, is a two-dimensional (2D) potential problem numerical approximation technique. In this paper, the application of the CVBEM towards improving the numerical accuracy of three-dimensional (3D) numerical methods, in solving 3D potential problems, is introduced. The provided theoretical approach can be directly extended to other 2D numerical techniques.

I. Mathematical formulation

Let Ω be a three-dimensional (3D) domain, with boundary Γ , with coordinates given for an arbitrary point by (τ_1, τ_2, τ_3) .

Consider the 3D potential problem $\nabla^2 \phi = f(\tau_1, \tau_2, \tau_3)$ on $\Omega \cup \Gamma$ with boundary conditions of the Dirichlet type (BCs) defined on Γ by the function $\phi_b(\tau_1, \tau_2, \tau_3)$. For a selected coordinate value $\tau_3 = \tau_3$, the corresponding boundary is the boundary of a 2D "slice", $\Gamma(\tau_3)$, denoted hereafter as Γ , and the corresponding domain is the interior of the "slice", $\Omega(\tau_3)$, denoted hereafter as Ω ', with boundary conditions on Γ given by $\phi_b(\tau_1, \tau_2)$. Similarly, for $\tau_3 = \tau_3$, $f(\tau_1, \tau_2, \tau_3)$; $f(\tau_1, \tau_2)$. On the domain Ω ', which is subset of Ω , we have

can be chosen in an infinite number of directions. Our goal is to approximate $\frac{\partial^2 \phi}{\partial \tau_3^2}$ as closely as possible by $\frac{\partial^2 \phi^P}{\partial \tau_3^2}$.

III. Approximation of
$$\frac{\partial^2 \phi}{\partial \tau_3^2}$$
 by $\frac{\partial^2 \phi^P}{\partial \tau_3^2}$

A second order finite difference approximation of both terms in the

equality setting
$$\frac{\partial^2 \phi}{\partial \tau_3^2} = \frac{\partial^2 \phi^P}{\partial \tau_3^2} \text{ is}$$

$$\frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta s^2} = \frac{\phi_{i+1}^P - 2\phi_i^P + \phi_{i-1}^P}{\Delta s^2}$$
(9)

where s is a tangential coordinate along the 3D boundary, Γ , and is chosen to include a nonzero τ_3 component (so as to be outside of the selected 2D slice), and i is an evaluation point on Γ , where n evaluation points are used for numerical integration purposes.

Then, at evaluation point i, we set $\phi_{i+1} - 2\phi_i + \phi_{i+1} = \eta_i = \phi_{i+1}^P - 2\phi_i^P + \phi_{i-1}^P$, or in terms of matrices and vectors, for n evaluation points on Γ to analyze $\frac{\partial^2 \phi}{\partial \tau_3^2}$,

where A is a square nxn matrix; and $<\phi^P>$ is a nx1 column vector.

But
$$\phi_i^P = \sum_{j=1}^N jg_j(p_i)$$
, such that the coordinate of evaluation point p_i is $(\tau_1, \tau_2, \tau_3)_i$. (11)

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial \tau_1^2} + \frac{\partial^2 \phi}{\partial \tau_2^2} + \frac{\partial^2 \phi}{\partial \tau_3^2} \tag{1}$$

which on $\Omega' \cup \Gamma'$ reduces to,

$$\frac{\partial^2 \phi}{\partial \tau_1^2} + \frac{\partial^2 \phi}{\partial \tau_2^2} = f(\tau_1, \tau_2) - \frac{\partial^2 \phi}{\partial \tau_3^2}, \text{ with BCs } \phi_b(\tau_1, \tau_2). \tag{2}$$

Let functions ϕ_f^P and ϕ_f^P satisfy

$$\frac{\partial^2 \phi_f^P}{\partial \tau_1^2} + \frac{\partial^2 \phi_f^P}{\partial \tau_2^2} = f(\tau_1, \tau_2)$$
 (3)

and

$$\frac{\partial^2 \phi^{\mathrm{P}}}{\partial \tau_1^2} + \frac{\partial^2 \phi^{\mathrm{P}}}{\partial \tau_2^2} = -\frac{\partial^2 \phi}{\partial \tau_3^2} \tag{4}$$

Then, on $\Omega' \cup \Gamma'$, we can solve the governing 3D partial differential equation (PDE) by first solving the 2D PDE,

$$\frac{\partial^2 \widehat{\phi}}{\partial \tau_1^2} + \frac{\partial^2 \widehat{\phi}}{\partial \tau_2^2} = 0 \text{, with BCs } \widehat{\phi}_b = \phi_b - \phi_f^P - \phi^P \text{ on } \Gamma'.$$
 (5)

Then, the 3D approximation in
$$\Omega' \cup \Gamma$$
, is $\widehat{\Phi} = \widehat{\phi} + \phi_f^P + \phi^P$. (6)

II. Numerical modeling approach

This paper's approach to solving (2) is to use a 3D function $\varphi^{\mbox{\scriptsize P}}$ of the form

$$\phi^{P} = \sum_{j=1}^{N3} c_{j} g_{j} \tag{7}$$

where the g_j are mutually independent functions such that the 3D Laplacian $\nabla^2 g_j$ = 0. The notation, N3, is the number of 3D nodes that enclose $\Omega \cup \Gamma$. We select c_i so that ϵ_1 is minimized in the usual residual error sense, where

$$\varepsilon_1 = \left\| \phi_{ss}^P - \phi_{ss} \right\|_{\Gamma'} \tag{8}$$

where ϕ_{SS} is the tangential second partial derivative of φ along Ω . Note that s

But from (11), the column vector of values ϕ_i^P is given by,

$$\langle \phi^{P} \rangle_{nx1} = \begin{bmatrix} g_{1}(p_{1}) & g_{2}(p_{1}) & \cdots & g_{N}(p_{1}) \\ g_{1}(p_{2}) & g_{2}(p_{2}) & \cdots & g_{N}(p_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & g_{2}(p_{n}) & \cdots & g_{N}(p_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1}(p_{n}) & \vdots & \vdots \\ g_{1}(p_{n}) & \vdots & \vdots \\ g_{2}(p_{n}) & \vdots & \vdots \\ g_{2$$

where $n \ge N$.

Then, combining (11) and (12),

$$\langle \eta \rangle_{nx1} = [A]_{nxn} [g(p)]_{nxN} \langle c \rangle_{Nx1}$$
 (13)

where matrices [A] and [g(p)] are completely determined by the above definitions, and $\langle c \rangle$ is to be determined by a least-squares type solution to minimize the usual residual error norm. Note that $\langle \eta \rangle = [A] \langle \phi \rangle$ where $\langle \phi \rangle = (\phi_1, \phi_2, \bullet \bullet \bullet, \phi_n)$. Then, equating matrix relationships,

$$[A] < \phi > = [A] [g(p)] < c >$$
 (14)

or, for [A] nonsingular,

$$\langle \phi \rangle = [g(p)] \langle c \rangle \tag{15}$$

which is the typical direct formulation for developing a 3D approximator. Thus, the standard 3D numerical technique also is a model for estimating $\frac{f^2\phi}{f\tau_3^2}$.

Thus, a typical 3D solution of the LaPlace equation can be directly used as ϕ^{P} .

IV. The complex variable boundary element method (CVBEM)

The CVBEM will be used to develop the 2D approximation, on $\Omega' \cup \Gamma'$ according to (5). Background on the CVBEM is provided in numerous texts and papers (see references).

V. The 3D model particular solution, $\phi^{\mathbf{P}}$

Given ϕ^P , and ϕ^P_f , we now develop new BCs along Γ' to be used in solving for the 2D approximator $\widehat{\phi}$ by the CVBEM. Note that these new BC values, on Γ' , is the discrepancy between $(\phi^P + \phi^P_f)$ and ϕ along Γ' .

VI. Vector space considerations

The ϕ^P approximator utilizes 3D basis functions of the form $g_j(\tau_1, \tau_2, \tau_3)$. The CVBEM utilizes 2D basis functions of the form $h_j(\tau_1, \tau_2)$. The linear operator is $L = \nabla^2$. Then, for any j, and independently,

$$Lg_j = 0$$
; $Lh_j = 0.(16)$

Recall, $L\phi_f^P=f$. Then the basis developed in this numerical approach is $B=\{g_j;h_j;\phi_f^P\}$.

VII. Discussion

In general, accuracy in 3D problems is increased by adding 3D basis functions, h increases modeling complexity. In our new case, we get another chance towards reducing modeling error by, in effect, adding additional basis functions in a 2D subspace of the 3D domain. These additional 2D basis functions can only help in reducing the overall 3D modeling error, in a least squares sense, although such improvements are seen on a 2D "slice" by "slice" basis.

VII. Conclusions

The Complex Variable Boundary Element Method, or CVBEM, is a two-dimensional (2D) potential problem numerical approximation technique. In this paper, the application of the CVBEM towards improving the numerical accuracy of three-dimensional (3D) numerical methods, in solving 3D potential problems, is introduced. The theoretical approach provided can be directly extended to other 2D numerical techniques.

References

- 1. Hromadka II, T.V. and Whitley, R.J., 1998, Advances in Complex Variable Boundary Element Method, Springer-Verlag, 350 pages.
- 2. Hromadka II, T.V. and Yen, C.C., 1986, *Complex Variable Boundary Elements*, Computational Mechanics Press.