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Abstract. A basic problem in hydrology is the computation of confidence levels for the
value of the T-year flood when it is obtained from a log Pearson III distribution using the
estimated mean, estimated standard deviation, and estimated skew. Here we give a
practical method for finding approximate one-sided or two-sided confidence intervals for
the 100-year flood based on data from a single site. These confidence intervals are
generally accurate to within a percent or two, as tested by simulations, and are obtained

by use of a neural network.

1. Introduction

A basic problem in hydrology is the estimation, for design
purposes, of the 100-year flood. One major source of uncer-
tainty in this estimation is the choice of underlying distribution
for maximum discharge [Bobee et al., 1993; Cohon et al., 1988;
World Meteorological Organization, 1989]. The U.S. Water Re-
source Council’s Bulletin 17B Advisory Council on Water Data
[1982] recommends the use of a log Pearson I distribution, fit
to yearly maximum discharge data, for the prediction of T-year
events. Other distributions and methods have been proposed
(see, for example, discussions by Bobee et al. [1993], Cohon et
al. {1988}, and World Meteorological Organization [1989]), but
in practice, because of the authority of the U.S. Water Re-
source Council, the log Pearson I distribution is used exten-
sively.

An important source of uncertainty in using the log Pearson
111 distribution to calculate the T-year event is that caused by
the estimation of the parameters of that distribution. To give a
more realistic estimate of the level of risk involved in a chosen
level of flood protection, it is necessary to quantify this uncer-
tainty by means of one-sided or two-sided confidence intervals
for the T-year flood estimates. The log Pearson III distribution
contains three parameters that, using the procedure of Bulletin
17B, are estimated by use of the estimated mean, estimated
standard deviation, and estimated skew of the distribution of
logarithms of the yearly maximal discharge data, as described
in more detail below. The estimators used for the mean, stan-
dard deviation, and skew are, except for the scaling factor
appearing in front of the bracket in (2) for the skew, the usual
ones.

The simplest case to consider is when the mean and standard
deviation are estimated but the skew is known to be zero.
Then, since the skew is zero, the log Pearson III distribution is
actually a lognormal distribution, and confidence intervals can
be obtained from the noncentral ¢ distribution [ddvisory Com-
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mittee on Water Data, 1982; Resnikof and Lieberman, 1957,
Stedinger, 1983].

The case of a known nonzero skew is more complicated than
the case of known zero skew [Bobee and Robitaille, 1975; Hu,
1987; Kite, 1975; Phien and Hsu, 1985]. For this case Stedinger
[1983] showed that the method of computing confidence inter-
vals suggested by the Advisory Committee on Water Data [1982)
is not satisfactory (also see the general discussion by
Chowdhury and Stedinger {1991]). Stedinger {1983] gave an ap-
proximate expression for confidence intervals for the quantiles
of the log Pearson 11 distribution using an asymptotic variance
formula [Bobee, 1973; Kite, 1976}, the accuracy of which was
discussed by Whitley and Hromadka {1986b, 1987]. And Whitley
and Hromadka [1986a} showed how to obtain confidence levels
for the T-year flood by means of simulations in the case of
known skew. '

For the realistic problem of computing confidence intervals
for the T-year flood when the mean, the standard deviation,
and the skew are all estimated, the only approaches available
that give confidence limits that are accurate for certain param-
eter ranges are those given by Ashkar and Bobee [1988] and
Chowdhury and Stedinger [1991]. The method of Ashkar and
Bobee [1988] applies to Pearson III distributions with positive
skew and is tested in their paper for 90% and 95% confidence
intervals for T = 100 and T = 500 year floods; m = 10 (T =
100 only), m = 25, and m = 50 site data points; and skews
of 0.5(0.5)3.0, with absolute errors ranging from 0.13% to
2.6%. For the (small) set of values common to the tests of our
method and the tests of Ashkar and Bobee {1988], the accuracy
is similar; it would be interesting to test their method over a
wider range of confidence levels, in particular for those small
return periods that would be needed to extend their results to
negative skews. The other available method is that suggested in
the interesting paper by Chowdhury and Stedinger [1991], in
which an approximate formula for confidence intervals is de-
rived on the basis of work by Stedinger [1983]. These approxi-
mate‘formulas were tested by Whitley and Hromadka {1997] for
the case of data from a single site by means of simulations and
were found to be accurate when the unknown values of skew
were zero but, roughly summarizing the contents of a 19 X 10
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Table 1. Errors m = 10
q

b% 2.5 5 10 25 50 75 90 95 97.5
-1.00 —-0.4 -0.9 —-0.4 —0.4 +0.2 +0.6 +0.5 -1.2 -1.3
-0.75 +0.4 +0.2 +0.7 +0.5 -0.5 -0.3 +0.3 —-0.9 -0.8
—0.50 +0.4 +0.4 +1.0 +0.2 -0.9 —-1.6 -0.3 —-0.8 -0.6
-0.25 +0.3 +0.2 +0.8 +0.4 -0.7 -1.7 -0.6 -0.9 -0.5
+0.00 +0.2 +0.1 +0.8 +0.3 -0.9 -1.7 -0.5 -0.8 -0.6
+0.25 -0.1 —-0.1 +0.7 +0.3 -0.7 -1.0 -0.4 0.8 -0.5
+0.50 —-0.4 —-0.2 +0.2 +0.0 -0.8 -0.2 —0.1 -0.6 -0.3
+0.75 -0.3 -0.3 +0.6 +0.3 +0.3 -0.2 +0.0 —-0.2 -03
+1.00 ~0.6 ~0.4 +0.1 -0.2 +0.9 +1.2 +1.0 +0.5 0.1

Entries are 100[Q(y) — q] for m = 10.

tabie, were in absolute error by about 4% (e.g., giving a con-
fidence interval of 46% rather than the correct 50%) for a skew
of 1/2 and in error by about 6% for a skew of —1/2. Bulletin 17B
also recommends weighting at-site skew with a regional skew,
and Chowdhury and Stedinger [1991] report better results for
this case.

The approach we take below involves finding approximate
confidence intervals for the 100-year flood based on data from
a single site by means of a nonstandard use of a neural network
applied to a large set of simulated data. The resulting method,
using a family of curves for the cases of 10, 20, or 30 data points
at the site and for confidence levels of 2.5, 5, 10, 25, 50, 75, 90,
95, and 97.5% is shown by simulations to be generally accurate
(see Tables 1-3).

2. Basic Formulas

In fitting yearly maximum discharge by a log Pearson 111
distribution, for the prediction of T-year events, the logarithm
of the yearly peak discharge is assumed to have a density
function given by 1/(|a|T(b))[(x — ¢)/a]®™* exp (—[(x —
c)/a}), where if a is positive, the density is given forx > ¢ and
is zero for x < c, while if a is negative, the density is given for
x < ¢ and is zero for x > ¢. From the above the mean p, the
standard deviation o, and the skew vy are seen to be related to
the parameters a, b, and c, by

o’ =a’%
v = 4/b 1)
w=c +ab,

Table 2. Errors m = 20

where a has the same sign as 7.

The case of zero skew is taken to be the limiting case when
the positive parameter b tends to infinity; the above density
function then converges to the density for the normal distri-
bution.

The recommendation of Bulletin 178 is that the parameters
a, b, and ¢ be estimated using (1) and using the usual moment
estimators for u, o, and v, but with the moment estimator for
v scaled to make it less biased [Bobee and Robitaille, 1975;
Lettenmaier and Burges, 1980]. If there are m observations at
the site, then

1 m
P«“EEX,’
12 " 2
m 1
& = - 2_ 52
G=|——g| |28 (2

i=1

1 ( m )”2[(1/m) Somoxd - 346 - 4]
~3
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The formula for the density function (above) shows that if X
denotes the logarithm of the maximum yearly discharge, then
(X — c)/a has a gamma distribution with parameter b and
density [1/T(b)]x" e forx > 0 and zero for x < 0.

A consequence of this (see (8)) is that the parameters a and
¢ can be scaled out of the problem by considering the random
variable (X — f)/&, in the same way that the mean and
standard deviation can be scaled out when constructing confi-
dence intervals for a normal distribution. However the pres-

q

v 25 5 10 25 50 75 90 95 975
~1.00 +0.6 -03 +0.1 +1.8 +1.2 -22 +1.0 —-0.8 —0.9
~0.75 +1.0 +0.8 +1.0 +1.6 +1.6 +0.7 +0.6 +0.2 -03
~0.50 +0.7 +0.4 +0.3 +0.7 +1.0 +1.4 +0.1 +0.5 0.1
-0.25 +0.2 -0.1 —-0.4 -1.0 +0.3 +0.9 —0.5 +0.4 -0.1
+0.00 -0.4 -0.4 -1.1 -1.7 -0.4 +0.1 -0.9 +0.0 +0.0
+0.25 -0.6 -0.7 -1.1 -1.9 -0.9 —-0.6 -11 +0.1 +0.0
+0.50 -0.5 -04 -0.8 -1.7 -13 -0.2 -1.0 +04 +02
+0.75 -0.2 +0.0 +0.3 —0.7 +0.0 +0.3 -0.3 +0.8 +05
+1.00 +0.2 +0.6 +1.0 +1.3 +1.6 +0.8 +0.1 +1.3 +1.1

Entries are 100{Q(y) — g] for m = 20.
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Table 3. Errors m = 3¢

q

Y 25 5 10 25 50 75 90 95 97.5
—-1.00 +0.7 +1.4 +1.7 -0.3 -25 -22 +0.3 ~1.0 -1.0
-0.75 +0.7 +1.4 +1.7 -0.6 +1.7 +12 +0.9 +0.3 +0.1
-0.50 +0.4 +0.6 +0.8 -1.1 +2.1 +15 +0.7 +0.8 +0.5
-0.25 -0.1 —0.4 ~02 -1.6 +12 +0.7 +0.3 +0.3 +0.0
+0.00 -0.4 ~0.8 —1.4 -1.8 -0.1 -0.3 -0.3 +0.0 -0.2
+0.25 -0.6 -12 -1.2 -2.1 ~15 ~0.9 -0.8 —-0.1 -0.6
+0.50 -0.2 -0.5 +0.7 ~1.0 -1.7 -1.3 -0.8 +0.0 -0.7
+0.75 +0.2 +0.2 +0.1 +0.2 -0.7 -0.9 -0.4 +0.4 =05
+1.00 +0.6 +1.1 +1.4 +1.8 +0.6 +0.2 +0.5 +1.0 -0.2

Entries are 100[Q(v) — q] for m = 30.

ence of the parameter b, or equivalently a nonzero skew,
makes the problem of obtaining confidence intervals much
more difficult than for the textbook case when the random
variable is normally distributed [Bowman and Shenton, 1988].

Let X denote the logarithm of yearly maximum discharge,
which has a Pearson III distribution. For any return period
T > 1, corresponding to the T-year flood, setp = 1 — (1/T).
The T-year flood value for X is the number x, having the
property that

P(X <x,) =p. 3

The interpretation of (3) is that over a long period of time the
maximal yearly discharge will not exceed the value x, in a
fraction p of the total yearly values; for example, for the T =
100 year flood the yearly maxima will be less than xg ¢¢ in
(approximately) 99% of the years of record.

For a site having m years ¢4, ¢,, ---, t,, of logarithms of
yearly maximal discharge data, a function g(m, p, q, ¢, t5,
-+, t,.) is said to provide a 100g% one-sided confidence
interval if it has the property that if it were to be used repeat-
edly on a large number of sites, each of which has m values of
yearly maxima (with a log Pearson Il distribution), then the
inequality

- 4)

holds (approximately) 100g % of the time. For example, ifg =
0.9, theng(m, p, q, ty,t5, ", 1,,) is a 90% safe estimate for
X,, in the following sense: Using (4) at a large number of
independent sites satisfying the basic assumption that their
maximal yearly discharges have a log Pearson 1II distribution
will provide the desired protection from the true but unknown
flood value x,, 90% of the time. It is convenient to write this
limiting value of the ratio of the number of times x,, < g(m,
P> G, 11, L5, *++, t,) holds divided by the total number of
samples, as one repeatedly samples more and more times from

independent sites as

xp<g(mapa CI: [13 t27 to

®)

The probability Prob, specifying the limiting results of re-
peated sampling, is to be distinguished from the probabilit.y
measure P for the space of events on which the random vari-
able X is defined, as in (3).

All manner of estimators g(m, p, 4, Iy, {2, *** > L) _could
be considered because there is no theory that indicates
whether it is possible to find an estimator using only the.m
sample data points from the site which will provide a function

PrOb (xp<g(m7p7 q’ th t27 T, tm)) =q

with the desired property of (5) or, if such a function does exist,
what form it takes. In what follows we will use an estimator
which depends only on the site sample mean fi, sample stan-
dard derivation &, and sample skew ¥, and has the form

g(’n,’p, qy tla t27"'7’rn):ll+&f(n1’p’ q; :)\,)’ (6)

where f is an unknown function to be determined.
Rewrite (5) using (6):

Y — 4
Prob(‘pAlJL
&

<f(m, p, q, ?)) =gq. O]

The key to finding confidence intervals in the case of known
skew for v, not zero [Whitley and Hromadka, 1986a], is that in
sampling m points from a Pearson I distribution X the ran-
dom variable (x, — [1)/¢ appearing in (7) has the same
probability distribution as

h = sgn (V)[(z, — .)/5.] (8)

where Z denotes a gamma distribution with the density as
given above, z,, is the T-year value for Z, and i, and &, denote
the random variables which are the sample mean and the
sample standard deviation using m points independently sam-
pled from Z’s gamma distribution. (In the case vy = 0 the
random variable of (8) has a noncentral ¢ distribution since X
is normally distributed). Then one can consider the random
variable in (8) that depends only on the one parameter vy as
opposed to X, which depends on the three parameters a, b,
and c.

The choice of the functional form of (6) was strongly influ-
enced by the fact that the right-hand side of (8) depends only
on the skew of the distribution X and not on its mean or its
standard deviation. Therefore when we wish to estimate the
function f by means of simulations, (7) and (8) show that X can
be taken to have mean 0 and standard deviation 1, and vy can
be varied over a suitable range. If, instead, the function f had
not been chosen so as to be invariant under the choice of mean
and standard deviation, then the simulation would need to be
performed over a range of possible mean values, possible stan-
dard deviation values, and possible skew values, which would
be much more difficult to do than simulating only over a range
of possible skew values. The risk in choosing ¢ to have the form
of (6), although it is easiest to work with, is that there is no
guarantee this simple choice of form for the confidence inter-
val function g will provide reasonable accuracy; the only way to
know is to do the simulations.
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3. The Neural Network

In the calculations below the T-year flood value of T = 100
was chosen as being the value commonly used in flood control
design. The range of parameter values m = 10, 20, and 30,
and confidence levels for g of 2.5, 5, 10, 25, 50, 75, 90, 95,
97.5% were chosen as being representative, and which would
allow the computation of two-sided confidence intervals as well
as the indicated one-sided confidence intervals. For each of
these values of m and g, a separate function f was determined,
so that each f was a function only of the estimated skew #.

The neural network used to approximate f has the form ¢, +
27, ¢;7(a; ¥ + b;), the transfer function 7 being the common
choice [Hassoun, 1995; Haykin, 1994]:

-1 1 t
7(t) =—2~+m=tanh<§> (9)
Preliminary calculations showed that it was sufficient to take
the pumber of nodes n = 3, for which the neural network is a
function of the 10 variables ¢q, ¢4, €5, €3, @y, a5, a3, by, by,
and b,.

The use of this neural network requires the minimization
over the 10 variables above of an objective function chosen so
that small values of this objective function correspond to the
network being able to better predict some target events, that is,
the network “learning” whatever one tries to “teach” by means
of examples. '

Letp = 1 — (1/100), m, and g be fixed. The objective
function that the neural network computation will attempt to
minimize is constructed as follows. For a given value vy of skew,
there is a 100-year value x, = x,(y), depending on vy. By
sampling m independent points from a gamma distribution
[Devroye, 1986}, a sample mean fi, a sample standard deviation
&, and sample skew % can be computed. Repeating these cal-
culations N times gives the collection ({;, 6;, ¥;), forj = 1,
.-+, N. These sample statistics can used to define

1
O(v) = + [the number of j for which f; + &(%)
N il I

> x,(v)] (10)

For the given value of skew v, there is a constant value for f
which makes (10) hold with the required confidence value of q.
The problem arises from our not knowing the value of y but
knowing only the value of the variable estimator .

1t would be desirable for (10) to have the approximate value
q for all +, but it is probably impossible to find an f for which
this is true. However it is possible to find an f for which (10) is
approximately equal to g for a range of values of vy which
include a sufficiently wide range of skews so as to be applicable
to real world problems. The range of skew considered by
Chowdhury and Stedinger [1991] is [—0.75, 0.75], while the
range considered here will be [—1, 1}. Thus the conclusion
reached here will be that if the unknown value of the skew lies
between —1 and 1, a plausible assumption for most regions in
the United States, then the curves constructed will supply con-
fidence levels with an accuracy discussed below.

To have (10) be the approximate value g for a wide range of
skew values, the objective function will be chosen to have this
true for a selected set of skew values; specifically, for y, = —1,
v, = —1/2, v5 = 0, v, = 1/2, and ys = 1. For these values, a
good choice of objective function is (1/5) 3 (Q(v;) — q)°.
In order to smooth out the distribution of errors, the actual
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objective function used was chosen by trial and error to be 0.9
times the function above plus 0.1 times max [|Q(v;) — ql:j =
1, .-, 5].

Ordinarily [Hassoun, 1995; Haykin, 1994], the use of a neural
network, with function f, involves a training set § of vectors x
and for each x, a real target value Target(x). The training, in
batch mode, consists of minimizing X, . (f(x) — Target
(x))2. The function f so determined is then tested on an
independent set of input vectors to ascertain how well it com--
putes the target values for that set. An interesting aspect of our
use of a neural network is that the target response for an input
value ¥ is not known; the desired network response cannot be
described in terms of its response to an individual input but
only in terms of its behavior over a large data set.

In minimizing the objective function the technique used is a
modification of a conjugate gradient method due to M. Powell
[Press et al., 1992, chap. 10.5; Bazaraa et al., 1993]; the modi-
fications include periodically resetting the orthogonal search
directions to randomly chosen orthonormal directions and us-
ing a simple robust linear search algorithm.

Some trial and error was required to find workable coeffi-
cient values for the case m = 20. At first 1000 sites were
considered (each consisting of 20 sample gamma variates), but
to obtain a neural network with consistent predictive ability
ultimately 15,000 sites were used. Each objective function eval-
uation then requires 1.5 million random gamma deviates, since
it involves 5 values of skew, each with 15,000 sites, and each
site has a sample mean, sample standard deviation, and sample
skew, based on 20 values of a gamma random variable. Be-
cause the minimization for each value of g requires thousands
of objective function evaluations, it is prohibitive to repeatedly
generate the random gamma deviates. Instead one file of
225,000 numbers consisting of 15,000 sets of a sample mean,
sample standard deviation, and sample skew, for each of the
skew values —1(1/2)1, was generated, read into memory, and
used repeatedly when calculating the objective function.

A typical calculation of this type, for one given value of m,
but for ¢ = 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5%, takes
about 10 hours using a 200 MHz Pentium Pro. (It is interesting
to note that on the original IBM PC, which was used for the
simulation work of Whitley and Hromadka [1986a), this calcu-
lation would have taken about 2 months.)

In practice, large values of skew are usually regarded with
suspicion and are combined with other smaller estimates of
skew from nearby sites or are adjusted by use of a regional
skew value obtained from a map of regional skews [McCuen,
1979], or are reduced in value some other way [Tasker and
Stedinger, 1986]. To reflect this practice, as well as for some
technical reasons, the sample skews used by Chowdhury and
Stedinger [1991] were truncated to lie in the interval [~2, 2] for
random population skews. In work by Whitley and Hromadka
[1997] the sample skews used were truncated to lie in the
interval [—2, 2], and that will also be done here: Whenever a
sample skew value ¥ is computed, either for training the neural
network or for testing it, if ¥ > 2, then it is set to the value ¥
= 2 and if ¥ < —2, then it is set to the value ¥ = —2. To get
some idea of the magnitude of this effect, if ¥y = 1, then the
percentages of the time that ¥ > 2.0 are 3.4%, 2.9%, 2.7% for
m = 10, m = 20, and m = 30, respectively, and if y = 0.75,
then the corresponding percentages are 2.1%, 1.5%, and 1.1%.
By symmetry the same percentages hold for the percentages of
the time that ¥ < —2for y = —1 and y = —0.75. In the purely
mathematical problem of finding approximate confidence in-
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] m=10 data points
confidence levels 2.5,5,10,25,50,75,90,95,97.5 %
10 ¢

confidence factor
N WA [4;] > 0~ [o4) «©

| e o

2 -15 1 05 0 05 1 15 2
sample skew

Figure 1. Confidence factor m = 10.

tervals for the T-year flood value, truncating the sample skew
values involves some loss of information and therefore makes
for a less accurate solution, but truncation better reflects how
the data is actually used.

4. Results

The numbers reported in Tables 1-3 are each the result of
an independent simulation for 50,000 sites. Using one of the
indicated values of vy, and for a specified value of m =
10(10)30 and a specified confidence level g = 2.5, 5, 10, 25,
50, 75, 90, 95, 97.5%, the corresponding neural network
confidence factor function f was tested as follows: For each site
independent samples of the size m were taken from a gamma
distribution with skew +y; a sample mean i, sample standard
deviation &, and sample skew ¥ were computed; and a count
was kept of how many times i + &f(%) > x,(v) held, from
which the value of O (), given in (10), was computed for N =
50,000. For each of the values of m = 10(10)30 a table is
given. For the indicated values of g and v, these tables report
the values of 100[{Q(y) — ¢] for independent simulations of
50,000 sites each. For example, Table 1 shows that the neural
network function f for m = 10 and ¢ = 90% gave confidence
limits of 90.3% if the true skew value was y = —0.75, while f
gave 89.9% confidence limits if y = +0.50.

Recall that the neural network was optimized to give accu-
rate confidence intervals for skew values of —1.0, —=0.5, 0, 0.5,
and 1.0 for a specific data set of 50,000 sites. The tests in the
table include these values of skew and the additional values
~0.75, —0.25, 0.25, and 0.75, all for entirely different data sets
than the one over which f was optimized. Thus the tabulated
values indicate the probable accuracy obtained by using the
neutral network functions f if the unknown site skew lies be-
tween —1 and 1, a plausible assumption for many regions of
the United States. Furthermore, additional testing for some of
the m and g values, using skews not in [—1, 1] but in the wider
range [—2, 2], gave curves that were indistinguishable from the
curves given below, showing that little accuracy was lost by
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restricting the range of skew to [—1, 1] when constructing the
neural network curves.

The neural network function f is plotted in Figures 1-3 for
m = 10, m = 20, and m = 30, respectively. In each figure
the family of lines plotted intersects the vertical line % = 2, with
the function f for the value ¢ = 2.5% being the lowest curve,
q = 5% being the next highest curve, and so on. For example,
suppose aq = 90% confidence interval is desired for a site of
m = 20 points, with the logarithm (base 10) of maximal

- discharges having sample mean f = 3.4 (log feet®/s), a sample

standard deviation ¢ = 0.2 and a sample skew ¥ = 0.5. The
value of f for ¢ = 90% can be read from Figure 2 form = 20
as f(0.5) = 4.7 approximately. Thus the 90% confidence limit
for the logarithm of the 100-year flood in log space would be
the number 3.4 + 4.7(0.2) = 4.34 for a discharge value of 10*3*
= 21,900 feet®/s (62,000 m?/s); that is, the probability, in the
sense of repeated sampling, is 0.90 that the true 100-year flood
value is no larger that 21,900. Some of the curves in Figures
1-3 show rather odd behavior for values of skew less than —1.
The principle reason for this will be discussed below, but in
spite of this anomalous behavior, using these curves gives the
accuracy reported in Tables 1-3. There would be perhaps a
small improvement in accuracy, and certain sets of values
would definitely be more consistent, if the errant curves were
interpolated by hand in a smooth fashion.

An interesting comparison concerns the confidence values
for known skew given by Stedinger [1983] and Whitley and
Hromadka [1986a, 1986b]. The neural network function f is
plotted in Figure 4 for the illustrative case m = 20 and q =
90%. The solid circles represent the values of the 90% confi-
dence factor if the skew is not estimated but is actually known
to have the values of skew indicated. So if in the numerical
example discussed above the skew was known to be equal to
0.5, and not estimated, then the 90% confidence value can be
calculated by using the circle value of 3.7 for a skew of 0.5, and
would be 3.4 + 3.7(0.2) = 4.14, or 10*!* = 13,800 feet’/s
(39,100 m¥/s).

The curve in Figure 4 lies below the circles of the curve for

m = 20 data points
confidence levels 2.5,5,10,25,50,75,90,95,97.5 %

10 ¢
9t
8 F
L 7
g 't
s 6}
8
e 9F
s
= 4
Q 4
2|
1 E
Oi._gm,‘,r,‘.h‘,x.,..|,..;;....|...‘
2 15 1 05 0 05 1 15 2

sample skew

Figure 2. Confidence factor m = 20.
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known skew if the sample skew is less than —1. This seems to
imply that one is worse off (the confidence interval is larger) if
one knows that the skew is, say, —2, than if one has only the
estimate —2 for the skew. This is puzzling since one should be
better off knowing the skew exactly. To understand why this
interpretation of the curves is incorrect, we must look at the
problem of prediction that the neural network is designed to
solve.

Consider the following sequence of skews vy followed in
parentheses by the approximate percentile of the number vy
itself in the distribution of sample skews: 0 (50%); 0.5 (60%);
0.75 (66%); 1.00 (70%). From the point of view of the predict-
ing neural network, the sample skews tend to be less than the
underlying unknown positive skew; for example, 70% of the
time the sample skew from a distribution with an actual skew
of 1 will be less than 1. Since the distribution of sample skews
for a Pearson III distribution with negative skew -y (and mean
zero, which is the case for our normalized simulations) can be
obtained as the negative of the distribution of the sample skews
of a Pearson 111 distribution with skew —vy, the percentiles
given above for positive skews are reversed for negative skews;
for example, only 30% of the sample skew from a distribution
with skew —1 are less than —1. The neural network can be
thought of as a two-step process. First, use the sample skew to
estimate the unknown skew. Second, use this estimated skew to
calculate the confidence limits. In the first step there are two
competing factors: If the sample skew came from a distribution
with a positive skew, then since the sample skews arc usually
less than the actual positive skew, a tendency which increases
with the magnitude of the skew, the network needs to estimate
a true skew to the right of the sample skew to be used in the
second step. A larger skew means a larger confidence value,
and this raises the f curve about the curve for known skew. If,
on the other hand, the sample skew came from a distribution
with negative skew, the estimate for the actual skew should be
to the left of the sample skew, making the confidence value
smaller. The way in which the distributions of the sample skews
for various values of true skew interact is complicated but is

m=30 data points
confidence levels 2.5,5,10,25,50,75,90,95,97.5%
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s T}
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g |
g 5
-8 g
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05‘, 1 { PO TR VI B S S SR VR S R SO
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sample skew

Figure 3. Confidence factor m = 30.
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m=20, q=90, dots for known skew
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Figure 4. Sample skew versus known skew.

summed up by the graph of the neural network function f.
With this in mind, reconsider the extreme example in which the
sample skew in Figure 4 is —2. The graph shows that for this
relatively large negative value there is very little contamination
of sample skews by negative skews from distributions with an
actual positive skew, and therefore since the unknown true
skew is (probably) negative, the corresponding estimate for the
unknown skew should be to the left of the sample skew, which
makes the confidence value smaller than if the sample skew
were used as an estimate for the unknown skew.

5. Conclusion

Confidence level curves f are calculated for upper confi-
dence limits for the 100-year flood when the yearly maximal
discharge data is from a log Pearson III probability distribu-
tion. This is done by means of an unusual application of neural
networks. These curves have been calculated for confidence
levels of 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and
97.5% for sites with 10, 20, and 30 data values of yearly max-
imal discharges. The user chooses the appropriate curve f (two
curves if a two-sided interval is desired); interpolates if the
number of data points m lies between 10 and 20 or 20 and 30;
and computes a sample mean fx, sample standard deviation &,
and sample skew ¥ for the logarithms of yearly maximal dis-
charges, from which the confidence level for the logarithm of
maximal yearly discharges is given by i + &f(%). The accu-
racy obtained in using this estimate for the desired confidence
level has been tested and shown to be have the good accuracy
displayed in Tables 1-3 under the assumption that the un-
known value of the site skew lies in the interval {1, 1).

It would be possible to extend the range of skew used in the
neural network simulations so as to cover a broader range of
unknown skew values, perhaps with not much Ioss in accuracy.
It would also be of value to extend the range of data points m
considered. Since a strength of neural networks is in approxi-
mating functions of several variables, it might be possible to
extend the neural network and find one function of the three
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variables of confidence level g, number of points at the site m,
and sample skew ¥ and allow a single f to be used for a broad

nge ofm, g, and ¥ values, avoiding interpolations. In fact, we
had this in mind when we began, but had troubles enough with
the one variable #.

While the accuracy obtained from the neural network is, we
feel, remarkable, computing the neural network curves in-
volves a considerable amount of trial and error to fit training
data sets of 5000 to 15,000 points accurately, although once
that is done the resulting curve always gives satisfactory test
results for 50,000 independent data points. Not only is this
process somewhat tedious, but even with these large data sets
we were not able to obtain the accuracy we wanted for the
99.5% and 0.5% confidence limits which are needed to com-
pute 99% two-sided confidence intervals. However, work is in
progress, using other methods that are less computationally
intensive and appear to be even more accurate than the neural
network, which we hope will allow the computation of more
confidence levels and a wider range of skew values.
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