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Approximate solutions, similar to the type used in the Complex Variable Boundary Element Method, are
shown to exist for two dimensional mixed boundary value potential problems on multiply connected domains.
These approximate sclutions can be used numerically to obtain least squares selutions or solutions which
interpolate given boundary conditions. Areas of application include fluid flow around obstacles and heat
flow in a domain with insulated boundary segments. © 1999 John Wiley & Sons, Inc. Numer Methods Partial
Differential Eq 15: 191-199, 1999

Keywords: mixed boundary value problems; two dimensional potential problems; Complex Variable Bound-
ary Element Method

I. INTRODUCTION

Most two dimensional steady-state potential engineering problems can be numerically solved by
means of the Complex Variable Boundary Element Method (CVBEM) [1, 2]. While many of
these problems are Dirichlet problems, where the potential is specified on the entire boundary
of the domain, there is also an important class of mixed boundary value problems. Two typical
examples of mixed problems are: steady state femperatures in a domain, where the temperature
is specified on part of the boundary and the remainder of the boundary is insulated; and fluid flow

& 1999 John Wiley & Sons, Inc. CCC 0749-159X/99/020191-09



192 WHITLEY AND HROMADKA

in a domain with obstacles, represented by holes in the domain, where the velocity potential is
specified on part of the boundary and on the remainder of the boundary the presence of walls and
obstacles is indicated by having zero fluid flow through this part of the boundary.

The CVBEM methods use analytic functions of the form

m
h(z) = ap + agz + Z ag(z — By ) log{z ~ Bx), (1
k=1
with nodes G, sited on the boundary of the domain, together with various ways of selecting
the coefficients to approximate the harmonic function, which is the exact solution of the given
problem by means of the real part of 2. A central theoretical issue is to establish that the solutions
of these boundary value problems can indeed be approximated by the functions given in (1).
This was done in [3, 4] for Dirichlet problems on a simply connected domain. The purpose of
this article is to establish similar approximation results for mixed boundary value problems on
multiply connected domains. In mixed boundary value problems, it is necessary to approximate
the gradient of the potential, as well as the potential. Since the derivative of the function in (1) is
not bounded at the points G, a modification is necessary. Let

fa(z) = (z — B) log(z — B), (2)

e 2B 2= )’
Foe) = 7 rog(e - gy - BP0, ®
and note that the derivative of Fjz is f3. It will turn out that the appropriate function 1o use in
approximating the potential on a simply connected domain will be

1
H(2) = ag + apz + ajz’ + Z aiFs, (2). (4)
k=1

Il. SIMPLY CONNECTED DOMAINS

Let £2 be a simply connected domain in the complex plane with a piecewise continuously differ-
entiable boundary T, which is a simple closed curve of finite length, parameterized by

v:10,1] — T (5)

It is assumed that the map ~ is continuous on [0, 1], one-to-one on [0, 1) with v(0) = (1),
is continuously differentiable, with nonzero derivative, except at a finite number of parameter
points ¢1, - . ., ¢ corresponding to corners that are not cusps; so that the right- and left-hand
limits of the derivative exist at each comer, are not zero, and satisfy the condition that for each
4,7 (¢;4) + ' (e;—} is not zero so that ¢; is not a cusp.

In order to correctly define the functions (2) and (3), for each Gy on I, we need to specify a
continuous non-self-intersecting path Pg,, joining Sy to infinity, which lies in the complement
of QUT. Then Ps, — f can be used as a branch cut to define a branch of the logarithm,
logg, (z — f), which is analytic for 2 not on the branch cut F, — A. To make this dependence
on the branch cuts clear, (2) and (3) will be written as

fo(z) = (z — B)logy(z - B), (6)

2 )2 Y B2
Fote) = T gz gy - 2L ™
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These branch cuts and related matters are discussed in [5].

Theorem 1.  Ler ¢ be a function harmonic in £ with a gradient V¢, which is continuous on
Q U T. For any positive € there is a function H, of the form given in (%), harmonic in $ and
continuous on St U T, with

|[Re(H)(2) ~ ¢(2)

Jor zin QU T, Further, the conjugate of the derivative of H is close 1o the gradient of ¢ :

< €, (8)

|H'(2) = Vo(z) <, 9

forzin QUT.

Proof. Since the Cauchy- Riemann equations are satisfied, the conjugate of V¢ is a function
f(2) analytic in £ and continuous on 2 U T', so Mergelyan’s Theorem [6, p. 270, 7, p. 271]
asserts the existence of a polynomial P(z) with

|P(z) — flz)l <e (10)
for z in Q UT. By Theorem 1 of [4], there is a CYBEM function 2(2) as in (1), with

|h{z) — P{z)| < ¢ (11)
also holding on 2 U T'. Thus,

|h(z) - f(z)] < 2e (12)

for z belonging to QU T,
Chose a fixed point z, in 2 and define F on {2 by

Fo) = [ T fd, (13)

the integral being independent of the path in £ joining 2, to 2, because {2 is simply connected.
Since f(z) is continuous on QU T, | f(2)| is bounded by M there. If z; and 2 in { are joined by
a curve lying in £3, then

|F(z2) — Fz1)] € Mare(z, z2), {14)

arc{z, 22) denoting the arc length of the curve. Since I" has a piece-wise smooth parameterization
~, given a point wq on T, there is a neighborhood U of wg and a constant Mj so that, given two
points z1 and z in I/ N €2, a curve joining them and lying in &/ M £ can be chosen with are(z;,
23) € Mo|z1 — z2|. Hence, F() is locally uniformly continuous and so extends continuously to
QYUT. Therefore, ¢z}, which is equal to ReF'(z} to within a constant, also extends continuously
toQUT.

There is a bound B such that any two points in €2 can be joined by a curve of length less than
or equal to B. To see this, let z; and z; in { be given, and let w; and wy be the closest points on
[ to these two points. The curve C consisting of the straight line from z; to w;, then along the
shorter of the two arcs from wn to ws, and then along a straight line from wy to 2 has length less
than the diameter of 2 U T plus one-half the arc length of I. The curve C, containing an arc of
I, does not lie entirely in €2, but can be moved slightly inside €2, as in the proof of Theorem 1 of
[4], thereby obtaining a curve in £ joining z; to 2, with length as close as desired to the length
of the curve C.
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Integrating Eq. (12),
|H(z) - F(z)| < 2Be (15)

holds for z in {2, and, therefore, for z in Q U T since both H(z) and F(z) are continuous thete,
and it follows that, modifying H to include the constant of integration,

|ReH (z) — {2} < 2Be, (16)
for z in 2 U I". Equations (8) and (9) follow from (12) and (16). Q.E.D.

Corollary 1. The nodes {3y} in the function H(z2) of Theorem | can be chosen to lie outside
of QUT.

Proof. lmmediately after Eq. (10) in the proof of Theorem 1, chose a piecewise smooth
curve I' containing 2 U T, and then proceed as in the proof to obtain a CVBEM function k, with
nodes on I, which approximates the polynomial P to within € on and inside T, The function
h then approximates P to within € on © U I" and has nodes lying on the arbitrary piecewise
smooth curve I containing the closure of the given domain. Now continue as in the proof of
Theorem 1. Q.E.D.

The result of Corollary 1 is surprising from the point of view of [3], where the proof given of
the existence of a CYBEM approximate soiution to any Dirichiet problem relies on the properties
of singular integrals with nodes on T

If the curve I arising in the proof of Corollary 1 is taken to be a large circle, the branch
cuts for the logarithms in (6) and (7} can simply be taken to be the exterior perpendiculars to the
circle at the nodes. Computational experiments need to be done to determine the advantages and
disadvantages of various placements of nodes outside Q U T,

The appearance of the conjugate of the derivative of H in (9) is a commonplace in fluid flow,
where H(z) = ¢(z) + t¥(2) is the complex potential for the flow, and ¢(z) is the velocity
potential. A simple consequence of the Cauchy- Riemann equations is

H'(z) = ¢ulz) + ivpa(2) = ¢ulz) — iy (2), a7

and the right-hand side of (17) is the conjugate of the velocity field V.

The usuval form of an applied mixed boundary value problem is that the boundary I is divided
into two disjoint pieces, €} and Cy, and it is desired to have the potential ¢{z) equal to a given
real valued function g;(z) on ' and the normal derivative equal to a given real valued function
g2{z) on Cy:

@(z) = ¢g1(z), for z on C, (18)
96(2)
giz) = go(z) for z on C5. (19)

There are two related but distinct ways of using Theorem 1 to approximate the solution of (18)
and (19}. The first method considers

/ (ReH(z) — g1(2))?|dz| + ] (H'(2) - n(z) — ga(2))?|dz|, (20)
Lo Co

where, for z = v(t) = z(t) + iy(t) on Ca,

n(z) — (,,,y’(t): mf(t))

21
IO OE @D
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is the exterior normal to the curve at z. Write the coefficients of H(2) given by (4)
A0y Oy By Oy« - - 5 Grny (22)
in terms of their real and imaginary parts
ag + 1B, o + 18y, o + 105, 00 + 161, -, Qe + 18 (23)

The customary least squares equations for minimizing (20) can be found by setting the partial
derivatives of (20) with respect to the real and imaginary parts of the coefficients in (23) equal to
zero, and solving the resulting set of linear equations for these real and imaginary coefficients,
with coefficient matrix (nearly always nonzero in practice) having terms that are integrals of
various products of real and imaginary parts of the functions 1, z, 22, { fz, (2)}, and { Fj5, (2)} in
the sums defining H(z) and H'(z) - n(z).

The other method of determining the coefficients of (23) 1s 1o chose

Z],ZQ,...,ZT,LI on Cl, (24)

20,25, ... 2, on Cy, (25)
and to consider the discrete versions of {18) and (19)

ReH(z;) = g1(z;), for z; on Ch (26)

H'(2}) - n(2}) = ga(z;) for 25 on Ca. 27y

If the number 1, + 1o of points on I is larger than the number of unknown real coefticients,
the overdetermined Eqs. (26) and (27) can be solved in a least squares sense. The case in which
the number of points equals the number of unknowns is particularly interesting, for then the
solution interpolates to the correct values at the points (24) and (25). This is very useful when
computing an approximate boundary, see [1, 2], which is an application of the idea of backward
error analysis in which a domain close to {2 is found on which the computed solution is the exact
solution.

Both these numerical methods can be applied to mixed boundary conditions that involve
combinations of values of ¢ and its normal derivative on the boundary.

The hypotheses of Theorem 1 that ¢(z) and V(z) be continuous on U T" is physically clear
for almost alt applications. However, oversimplifications in modeling can create discontinuities.

A simple case of this is a domain with an insulated comner, for example the domain the unit
square with the top and right-hand vertical side insulated; then for B‘g—gf) = {} to hold around the
upper right-hand corner, with of course n(z) undefined at the corner, generally forces V¢ (z) to
have a discontinuity at that corner. To avoid this, the corner can be rounded, or else the approxi-
mate boundary technique can be applied and the approximate domain on which the approximate
CVBEM sclution is exact will be found to have a rounded comer,

Another example is given by considering F'(2) = /2 log(z), with the branch cut for the square
root and the logarithm being the negative z-axis, Q = {z: |z — 1| < 1}, and ¢(z) = ReF(z).
Then ¢(z) is continuous on 2 U T, but %Ezi) is unbounded in any neighborhood of 0. In this
case, the boundary condition ¢(z) = ReF(z) on I is not smooth enough at zero to have V{z)
extend continuously to the closure of 2.

As a final example, consider F'(z) = —zlog(z) on a quarter circle § = {z = re’’: 0 < r <
1L0<f< It withCy = {(0,y): 0 <y <1}U{z=¢"0<0 <}, and C3 = {(2,0):
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0 < z < 1}. Then ¢{z) = ReF(z) is a solution to the following mixed boundary value problem.
On the y-axis arc of 1, ¢(y) = 5y, while on the semicircular arc of Ch, p(e®) = 0sind. On
Co, % = (). The correspending boundary functions g1{z) and ga2(z) of (18) and (19) are
quite smooth. The fact that V¢)(z) is unbounded in any neighborhood of 0 is hidden by the
discontinuous transition there from a boundary condition on ¢( ) to a boundary condition on the
normal derivative.

It is occasionally desirable to have a model in which there i1s a boundary discontinuity or
singularity in the potential ¢ or in V¢. In this case, it is best to attempt to model this behavior
from physical principles. Otherwise, a numerical solution using the CVBEM, or other technigues,
perhaps on a domain of a slightly different shape as computed from approximate boundary methods
or with smoother boundary conditions, will describe the physical situation better than a rigid
adherence to a misleading simplified model.

Il. MULTIPLY CONNECTED DOMAINS

Let £2 be amultiply connected domain in the complex plane with : holes; I'y a simple closed curve
of boundary points of {2 that includes £ and all the holes, and T'; the simple closed curve consisting
of boundary points of {2 that encloses the j-th hole, j = 1,...,m. The curves I'g, I'y, ..., Ty,
are assumed to each satisfy the smoothness conditions on the boundary of the domain in section L

A specific example of a physical problem that uses such a domain [2, p. 110] is the problem
of calculating the fluid flow through a section of a river bed around piers that support a bridge,
the area under water being the domain 2 and the piers corresponding to holes in €2.

Theorem 2.  Lez S be a multiply connected domain, as described above, and let a; be a point
inside the hole surrounded by the curve T, § = 1,...,m. Let ¢ be a function harmonic in  with
a gradient V ¢ that is continuous on QU T, where ' = To UL U -+ [y,

For any positive ¢ there are CVBEM functions H;(z),5 = 0,1,...,m, as given in (4) with
the nodes {61} and branch cuts for the logarithms appearing in H;(z) chosen as follows: The
nodes {32} can be chosen on T'g with branch cuts joining each node 1o infinity exactly as in the
case where §) is simply connected. For j = 1,...,m, consider the function

1
9:(2) = s @9

Z - G,j '
Chose nodes {ﬁi} on I;, and for each node let fffc be a simple curve joining Bi to a; lying
entirely in the hole except for the end point node. Set
7= 0;(B) (29)

and

L}, = g;(L4). (30)
The points (29) are the nodes to be used for the term I, ; (2) in the sum (4) defining H;(2) and
the curves

Ly - B (1)

the branch cuis for the logarithm appearing in that function. Setting

1 1 1
H(z) = Hy(z) + Hy (z—al) + H; (Zl‘lz) +ot Hey (m;), (32)
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|ReH (z) - ¢{z)| < efor zin QU (33)

Further, the conjugate of the derivative of H is close to the gradient of ¢ on the domain

|H'(z) — V(z)| < eforzinQQUT. (34)

Proof. Since the conjugate f of V@(z) is a function analytic in £ 2nd continuous on QU T,
Mergelyan’s theorem [7, pp. 390, 394; 6, p. 307} asserts the existence of a rational function
R(z), analytic on Q U T" with

|f(2) — R(z)] < eforzimn QU (35)
Since R{z) is analytic on a neighborhood of € U I', Runge’s theorem {7. p. 270; 6, p. 271]
supplies a rational function Q(z), with poles only in the set {c0, a1, a2, ..., 0, } and
IR(z) —Q{z)| < eforzin QUT. (36)
Writing out Q(z} in terms of its principal parts associated with the poles a,, . .., a,, gives poly-
nomials Fy(z), P1(2),..., Pm(z) with
1 1
Qz) = Fy(z) + A (——) S ( ) . 37
z—m Z = G
Hence,
\ 1
f(z) = Polz) — Py — - =P |- < ZeforzinQrul.  (38)
\ zZ—a Z— Qe

By Theorem 1 of [4], there is a CVBEM function ho(z) of the form (1) with nodes {ﬁg} on
Ty with
|ho(2) — Fo(z)| < e (39)

Equation (39) holds on I'g and in the interior of ', which consists of £2 as well as all the holes
in (.

Consider the j-th hole, bounded by I'; and containing a;. The function g; of (28) is analytic
on QU T, and maps the boundary of the j-th hole to another simple closed curve

The domain 2, as well as all the holes other than the j-th hole, are mapped by g;(z) into the
interior €} of I';. Let

1
z—Qy

W= (41)

Since 0 does not belong to & U 17, w2 P;(w) is analytic on a neighborhood of €2} U I';. By
Theorem 1 of [4], there is a CVBEM function h;(w) of the form (1) with nodes {57} on I‘; and
corresponding branch cuts and

1 \
hi(w) + 55173 (w}i < ¢ for z inside and on T} (42)

Set

d = min{dist(a;,L;):j = 1,...,m}. (43)
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For z belonging to €t U T and not in the 5-th hole,

1 1 1 €
e () -8 ()] <k @)

Note that under the mapping g;, nodes on I'; correspond to nodes on I‘; and branch cuts in the
w-plane correspond to simple curves in the 2-plane, lying in the j-hole and joining the nodes to
aj. Let

e

1 1
W) =hola) =3 o st (Z_aj), 45)
and note
Ih(z) = f(2)] < 26+ =, (46)
on (YU . Then, letting H; denote the function of the form given in (4) with derivative h;,
¢ 1
H() = Hoe) + 3 () @)
is analytic in £, continuous on £ U I", and has
H'(z) = h(z). (48)

Equation {34) follows from (38), (44), (46), and (48).

For any point of ", there is a sufficiently small neighborhood {/, which intersects §2 in a simply
connected set. Since f(z) is analytic on this simply connected set, there is a function F(z),
analytic on U, with E7(z) = f(z) holding in U. (Note that this is indeed a local phenomenon; the

1

function ;— is analytic in {2 and continuous on X UT', but there is no analytic function defined
7

on all of 2 with derivative z+%') As in the proof of Theorem 1, F'(z) is seen to be uniformly
continuous on U, ¢ is seen to extend continuously to the part of the boundary of £ contained in
U/, and thus extend continuously to all of I,

To circumvent the problems caused by the local integrability of f(z), the domain will be
temporarily be altered. A cross-cut is a non-self-intersecting curve joining two boundary points
of {2 and lying entirely in {2 otherwise. Chose a point on the boundary I'; of the first hole and join
it, via a cross-cut, to a point on the boundary I'g. (It is simplest to let I'; be the hole boundary
that is closest to I'y whereby this cross-cut can be taken to be a straight line.) Removing this
cross-cut from €2 gives a domain with m — 1 holes. Proceeding inductively, after removing m — 1
cross-cuts from the domain, the remaining domain, £2,, is a simply connected subset of (2 [8, p.
3} The function f(z) is analytic on £, and so can be integrated on this simply connected domain
0 give a function F(z), also analtytic on §)., with

F'(2) = f(z) = V(z) for z in Q.. (49)
As in the proof of Theorem 1,
|H{(z} + F(z¢) — H(z0} — F(2)] < ¢B on 1. (50)
Incorporating the constants in (50) into H(z),

|ReH(z) — ¢(z)] < eBon},. &1}
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Since both AeH (z) and ¢(z) are continuous on QUY, Eq. (51) holds on the closure of .., which
is QUT, and (33) follows. Q.E.D.

The point of the choice of nodes and branch cuts in (29) and (30) is simply that, for z in €2, the
values ﬁ need to belong to a domain in which H; is analytic so that H(z) in (47) is analytic.

As in the first section, the nodes {32} can be chosen to lie in the exterior of 'y, and the nodes
{31} can be chosen to lie inside the hole bounded by I';. If, for example, the nodes {37}, for
J # 0, are chosen on a circle of small radius r, centered at a;, and the curves f‘i to be radii joining
a; to these nodes, then {,Bi} lie on a circle with large radius % centered at (0, and the curves L}i
are the external normals to this circle at those points.

If the boundary I' = I'y U I'y U --- U Iy, of Q is divided into two disjoint subsets € and
C, then the mixed boundary value problem of (18) and (19) can be approached numericaily
exactly as in the first section, by minimizing Eq. (20) or finding the least-squares solution of Egs.
(26)-(27).

References

1. T.V. Hromadka I and C. Lai, The complex variable boundary element method, Springer—Verlag, New
York, 1987.

2. T. V. Hromadka II and R. Whitley, Advances in the complex variable boundary element method,
Springer—Verlag, New York, 1997.

3. R. Whitley and T. V. Hromadka II, Numerical solutions of the Dirichlet problem via a density theorem.
Num Methods for Part Diff Eq 10 (1994), 369.

4. R.J. Whitley and T. V. Hromadka II, The existence of approximate solutions for two-dimensional
potential flow problems. Num Methods for Part Diff Eq 12 (1996), 719.

5. R. Whitley and T. V. Hromadka II, Compiex logarithms, Cauchy principle values, and the complex
variable boundary element method. Appl Math Mod 18 (1994), 423.

6. E. Stout, The theory of uniform algebras, Bogden and Quigley, New York, 1971.
W. Rudin, Real and complex analysis, McGraw—Hill, New York, 1987.
8. Z. Nehari, Conformal mapping, McGraw—Hill, New York, 1952; Daver Pub., New York, 1975.



