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ABSTRACT
A basic problem in hydrology is the computation of confidence
levels for the value of the T-year flood when it is obtained from a log
Pearson III distribution using the estimated mean, estimated standard de-
viation, and estimated skew. Here we give a practical method for finding
approximate one-sided or two-sided confidence intervals for the 100-year
flood based on data from a single site. These confidence intervals are gen-
erallv accurate to within a percent or two, as tested by simulations, and a.ré

obtained by use of a neural network.
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Introduction

A basic problem in hydrology is the estimation, for design pur-
poses, of the 100 vear lood. One major source of uncertainty in this es-
timation is the choice of underlying distribution for maximum discharge
[Bobee, et. al, 1993, Cohon, et. al., 1988, and World Meteorological Ot-
ganization, 1989]. Water Resource Council Bulletin 17B [Advisory Council
on Water Data, 1982] recommends the use of a log Pearson III distribution,
fit to yearly maximum discharge data, for the prediction of T-year events.
Other distributions and methods have been proposed, see for example the
discussion in [Bobee. et. al., 1993, Cohon. et. al.. 1988, and World Mete-
orological Organization, 1989}, but in practice, because of the authority of
the U.S. Water Resource Council. the log Pearson III distribution is used

extensively.

An important source of uncertainty in using the log Pearson III
distribution to calculate the T-year event is that caused by the estimation
of the parameters of that distribution. To give a more realistic estimate of
the level of risk involved in a chosen level of lood protection it is necessary
to quantify this uncertainty by means of one-sided or two-sided confidence

intervals for the T-year flood estimates. The log Pearson III distribution
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contains three parameters which, using the procedure of Bulletins 17A and
17B. are estimated by use of the estimated mean, estimated standard de-
viation, and estimated skew of the distribution of logarithms of the vearly
maximal discharge data, as described in more detail below. The estimators
used for the mean, standard deviation, and skew are, except for the scaling
factor appearing in front of the bracket in the formula (3) for the skew. the

usual ones.

The simplest case to consider is when the mean and standard
deviation are estimated but the skew is known to be zero. Then, since
the skew is zero. the log Pearson III distribution is actually a log normal
distribution, and confidence intervals can be obtained from the non-central
t-distribution [Advisory Committee on Water Data. 1982. Resnikof and

Lieberman, 1957, Stedinger, 1983].

The case of a known non-zero skew is more complicated than
the case of known zero skew [Bobee and Robitaille, 1977, Hu, 1987, Kite,
© 1975, Phien and Hsu, 1985]. For this case Stedinger [1983] showed that the
method of computing confidence intervals suggested in [Advisory Commit-
tee on Water Data, 1982] is not satisfactory: also see the general discussion

in [Chowdhury and Stedinger, 1991]. Stedinger [1983] gave an approximate
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expression for confidence intervals for the quantiles of the log Pearson III
distribution using an asymptotic variance formula [Bobee. 1973. Kite, 1976],
the accuracy of which was discussed in [Whitley and Hromadka 1986b,
1987]. And Whitley and Hromadka [1986a] showed how to obtain conﬁ-
dence levels for the T-year Hood by means of simulations in the case of

known skew.

For the realistic problem of computing confidence intervals for the
T- year flood when the mean, the standard deviation and the skew are all
estimated, the only approaches available which give confidence limits which
are accurate for certain parameter ranges are Ashkar and Bobbie [1988] and
Chowdhury and Stedinger [1991]. The method of Ashkar and Bobee [1988]
applies to Pearson III distributions with positive skew and is tested in their
paper for 90% and 95% confidence intervals for T = 100 and T = 500 year
floods. m = 10(T = 100 only) and m = 25 and m = 350 site data points,
and skews of 0.5(0.5)3.0, with absolute errors ranging from 0.13% to 2.6%.
For the (small) set of values common to the tests of our method and the
tests of [Ashkar and Bobbie. 1988], the accuracy is similar: it would be
interesting to test their method over a wider range of confidence levels, in

particular for those small return periods which would be needed to extend
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their results to negative skews. The other available method is that suggested
in the interesting paper by Chowdhury and Stedinger [1991]. in which an
approximate formula for confidence intervals is derived based on [Stedinger,
1983]. These approximate fdfmulas were tested by Whitley and Hromadka
[1997] for the case of data from a single site by means of simulations, and
were found to be accurate when the unknown values of skew were zero,
but. roughly summarizing the contents of a 19x10 table, were in absolute
error by about 4% (e.g. giving a confidence interval of 46% rather than the
correct 50%) for a skew of % and In error by about 6% for a skew of —--12-.
Bulletin 17B also recomnmends weighting at-site skew with a regional skew

and Chowdhury and Stedinger {1981] report better results for this case.

The approach we take below involves finding approximate confi-
dence intervals for the 100-year flood based on data from a single site by
‘means of a nonstandard use of a neural network applied to a large set of
simulated data. The resulting method, using a family of curves for the
cases of 10, 20 or 30 data points at t‘he site, and for confidence levels of
2.5,5.10,25.50.75,90,95,97.5% is shown by simulations to be generally

accurate: see Tables 1-3.
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Basic Formulas
In fitting yearly maximum discharge by a log Pearson 111 distri-
bution, for the prediction of T-year events, the logarithm of the yearly peak

discharge is assumed to have a density function given by:

1 z—-c]®! EEE
(5 | a ] € (1)

where, if a is positive, the density if given by (1) for x > ¢ and is zero for
z < ¢, while if a is negative, the density is given by (1) for z < ¢ and is zero
for £ > ¢. From equation (1), the mean pu, the standard deviation o, and

the skew ~ are seen to be related to the parameters a, b, and ¢, by

o? =a?b
i = ¢+ ab,

where a has the same sign as 7.
The case of zero skew is taken to be the limiting case when the
positive parameter b tends to infinity; the density in (1) then converges to

the density for the normal distribution.
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The recommendation of Bulletin 17B is that the parameters a.

b. and ¢ be estimated using equations (2) and using the usual moment
estimators for py. o, and v, but with the moment estimator for v scaled to
make it less biased [Bobee and Robitaille, 1975]. [Lettenmaier and Burges,

1980]. If there are m observations at the site:

o1
#2521&

) ] m \?[LX0, 2% - 346 — 4]
I

’:m—‘Z -1

The formula (1) for the density function shows that if X denotes

the logarithm of the maximum yearly discharge, then Xa‘c has a gamma

distribution with parameter b and density:

1 -1_—x
-F—(gja:" e (4)

for x > 0 and zero for r < 0.
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A consequence of this is that, see equation (11) below. the param-
eters a and c can be scaled out of the problem by considering the random

variable

/Y—}'_L

P (3)
in the same way that the mean and standard deviation can be scaled out
when constructing confidence intervals for a normal distribution. However
the presence of the parameter b, or equivalently a non-zero skew, makes the
problem of obtaining confidence intervals much more difficult than for the
text book case when the random variable is normally distributed [Bowman
and Shenton, 1988].

Let X denote the logarithm of yearly maximum discharge, which
has a Pearson III distribution. For any return pericd T > 1. corresponding

i

to the T-year flood, set p = 1 — 5. The T-year flood value for X is the

number z, having the property that

P(X < z,) =p. (6)

The interpretation of (6) being that over a long period of time the maximal

yearly discharge will not exceed the value x, in a fraction p of the total
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yearly values, e.g. for the T = 100 year flood, the yearly maxima will be

less than r g9 in (approximately) 99% of the years of record.

For a site having m years ty,tq,...,t,, of logarithms of yearly
maximal discharge data, a function g(m.p.q,t,,ts. ..., ¢,,) is said to provide
a 100g% one-sided confidence interval if it has the property that if it were

to be used repeatedly on a large number of sites, each of which has m values

of yearly maxima (with a log Pearson III distribution), then the inequality

xp<g(manQatlnt21-'-vtm) (7)

holds (approximately) 100¢% of the time. For example if ¢ = .9 then
glm,p,g.t1.ta, . ... tm) is a 90% safe estimate for z,. in the following sense:
using equation (7) at a large number of independent sites satisfying the basic
assumption that their maximal yearly discharges have a log Pearson III
distribution will provide the desired protection from the true but unknown
flood value z, 90% of the time. It is convenient to write this limiting value
of the ratio of the number of times z, < g{m,p.q,t1,,t2,...,tm)) holds
divided by the total number of samples, as one repeatedly samples more

and more times from independent sites as:
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Prob(_xp<g(m.p.q,t1,,t2,.,,,tm)):-_q (8)

The probability Prob, specifying the limiting results of repeated
sampling, is to be distinguished from the probability measure P for the
space of events on which the random variable X is defined, as in equation
(6).

All manner of estimators g{m,p,q.t,,,t2,...,t,) could be con-
sidered, there being no theory which indicates whether it is possible to find
an estimator using only the m sample data points from the site which will
provide a function with the desired property of (8) or. if such a function
does exist, what form it takes. In what follows we will use an estimator
which depends only on the site sample mean /i, sample standard derivation

&, and sample skew <, and has the form:

g(map:Qatlﬂt?:-'-:tm)—_"ﬁ"l'af(m}pqu‘})u (9)

where f is an unknown function to be determined.

Rewrite (8) using (9):

Prob (I”—;—‘f < f(m,p,q,%)) =q. (10)
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The key to finding confidence intervals in the case of known skew
for ¥ not zero [Whitley and Hromadka. 1986a] is that in sampling m points
from a Pearson III distribution X the random variable —";——‘i appearing in

(10) has the same probability distribution as

sgn(7) [“” _ ’12] (11)

where Z denotes a gamma distribution with the density given by (4), z,
the T-year value for Z, and f, and &, denote the random variables which
are the sample mean and the sample standard deviation using m points
independently sampled from Z's gamma distribution. (In the case v = 0,
the random variable of equation (11) has a non-central t-distribution, since
X is normally distributed). Then one can consider the random variable in
(11) which depends only on the one parameter 7 as opposed to X which
depends on the three parameters a. b. and c.

The choice of the functional form of equation (9) was strongly
influenced by the fact that the right-hand side of equation (11) depends
only on the skew of the distribution X, and not on its mean or its standard
deviation. Therefore when we wish to estimate the function f by means of

simulations, equations (10) and (11) show that X can be taken to have mean
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zero and standard deviation one, and 7y can be varied over a suitable range.
If. instead. the function f had not been chosen so as to be invariant under
the choice of mean and standard deviation, then the simulation would need
to be performed over a range of possible mean values, possible standard
deviation values, and possible skew values, which would be much more
difficult to do than simulating only over a range of possible skew values. The
risk in choosing g to have the form (9), although it is easiest to work with,
1s that there is no guarantee this simple choice of form for the confidence
interval function g will provide reasonable accuracy; the only way to know

1s to do the simulations.
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The Neural Network

In the calculations below the T-year flood value of T = 100 was
chosen as being the value cornmonly used in flood control design. The
range of parameter values m = 10. 20, and 30. and counfidence levels for
g of 2.5,5,10,25.50,75,90,95,97.5% were chosen as being representative.
and which would allow the computation of two-sided confidence intervals
as well as the indicated one-sided confidence intervals. For each of these
values of m and g. a separate function f was determined, so that each f
was a function only of the estimated skew 4.

The neural network used to approximate f has the form:

co + Z cirt(asy + by). (12)

=1

the transfer function 7 being the common choice [Hassoun, 1995; Haykin,

1994]

1 + 1
1 + exp(—t)

(1) == _ tanh(%) (13)

Preliminary calculations showed that it was sufficient to take the num-

ber of nodes n = 3, for which (12) is a function of the ten variables

607617025C33a17a2ra37b17525 and b3-
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The use of this neural network requires the minimization over
the ten variables above of an ob jective function chosen so that small values
of this objective function correspond to the network being able to better
predict some target events. i.e. the network "learning” whatever one tries
to "teach” by means of examples.

Letp=1 - Tflm“o'* m, and g be fixed. The objective function that
the neural network computation will attempt to minimize is constructed
as follows. For a given value ~ of skew. there is a 100~year value I, =
zp(7), depending on v. By sampling m independent points from a gamina
distribution [Devroye. 1986]. a sample mean /i. a sample standard deviation

o. and sample skew ¥ can be computed. Repeating these calculations NV

times gives the collection

(ft;,65,9;). for j=1,... N. {14)

These sample statistics can used to define

Q(7) = [ the mumber of j for which 4, +&,£(3;) > z,().  (15)

For the given value of skew 7. there is a constant value for f which makes

(15) hold with the required confidence value of g. The problem arises from
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our not knowing the value of . but only knowing the value of the variable
estimator 7,

It would be desirable for (15) to have the approximate value ¢
for all v, but it is probably impossible to find an f for which this is true.
However it is possible to find an f for which (15) is approximately equal to ¢
for a range of values of v which include a sufficiently wide range of skews so
as to be applicable to real world problems. The range of skew considered in
[Chowdhury and Stedingef, 1991] is [-0.75,0.75], while the range considered
here will be [-1,1]. Thus the conclusion reached here will be that if the
unknown value of the skew lies between -1 and 1, a plausible assumption
for most regions in the United States, then the curves constructed will
supply confidence levels with an accuracy discussed below.

To have (15) be the approximate value g for a wide range of skew
values, the objective function will be chosen to have this true for a selected
set of skew values; specifically for v; = —1,90 = ~1/2, v3 = 0, 74 = 1/2,

and s = 1. For these values, a good choice of objective function is:

3

£ (0 —a) (16)

1

In order to smooth out the distribution of errors, the actual objective func-
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tion used was chosen by trial and error to be 0.9 times the function of

equation (16) plus 0.1 times (17) below

maz [|Q(r) =gl G =1.....3]. (17)

Ordinarily [Hassoun, 1995, Haykin, 1994] the use of a neural
network. with function f. involves a training set S of vectors x and. for each

z a real target value Target(x). The training, in batch mode, consists of

MINIUzing

Y (f(z) = Target(z))*. (18)

€S

The function f so determined is then tested on an independent set of input
vectors to ascertain how well it computes the target values for that set. An
interesting aspect of our use of a neural network is that the target response
for an input value * is not known: the desired network response cannot be
described in terms of its response to an individual input, but only in terms
of its behavior over a large data set.

In minimizing the objective function the technique used is a mod-
ification of a conjugate gradient method due to Powell, see Chap.10.5 in

[Press, et. al.,1992] and [Bazaraa, et. al., 1993]; the modifications include
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periodically resetting the orthogonal search directions to randomly chosen

orthonormal directions and using a simple robust linear search algorithm.

Some trial and error was required to find workable coefficient
values for the case m = 20. At first 1000 sites were considered (each con-
sisting of 20 sample gamma variates), but to obtain a neural network with
cousistent predictive ability ultimately 15,000 sites were used. Each objec-
tive function evaluation then requires 1.5 million random gamma deviates,
since it involves 3 values of skew, each with 15,000 sites, and each site has
a sample mean, sample standard deviation. and sample skew, based on 20
values of a gamma random variable. Because the minimization for each
value of q requires thousands of objective function evaluations, it is pro-
hibitive to repeatedly generate the random gamina deviates. Instead one
file of 225,000 numbers consisting of 15,000 sets of a sample mean, sample
standard deviation, and sample skew, for each of the skew values -1(1/2)1,
was generated. read into memory, and used repeatedly when calculating the

objective function.

A tyvpical calculation of this type. for one given value of m, but for
g = 2.5,5,10,25, 50, 75,90, 95,97.5%, takes about 10 hours using a 200MHz

Pentium Pro. (It is interesting to note that on the original IBM PC, which
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was used for the simulation work in [Whitley and Hromadka, 1986a], this

calculation would have taken about two months. )

In practice, large values of skew are usually regarded with sus-
picion and are combined with other smaller estimates of skew from nearby
sites, or adjusted by use of a regional skew value obtained from a map of
regional skews [McCuen. 1979]. or are reduced in value some other way
[Tasker and Stedinger, 1986]. To reflect this practice, as well as for some
technical reasons, the sample skews used in [Chowdhury and Stedinger,
1991] were truncated to lie in the interval (-2,2] for random population
skews. In [Whitleyv and Hromadka, 1997] the sample skews used were trup-
cated to lie in the interval [-2.2], and that will also be doge here: whenever
a sample skew value 9 is computed. either for training the neural network
or for testing it, if ¥ > 2 then it is set to the valye ¥=2and if 4 < =2
then it is set to the value 4 = —2. To get some idea of the magnitude of
this effect, if ¥ = 1 then the percentages of the time that ¥ > 2.0 are 3.4%,
2.9%, 2.7% for m = 10, m = 20, and m = 30 respectively, and if v = 0.75
the corresponding percentages are 2.1%. 1.5%. and 1.1%. By symmetry
the same percentages hold for the percentages of the time that ¥ < -2 for

v = —1and 7y = —0.75. In the purely mathematical problem of finding
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approximate confidence intervals for the T-year flood value. truncating the
sample skew values involves some loss of information and therefore makes
for a less accurate solution. but truncation better reflects how the data is

actually used.

Results

The numbers reported in Tables 1-3 below are each one the results
of an independent simulation for 50,000 sites. Using one of the indicated
values of v. and for a specified value of m = 10(10)30 and a specified confi-
dence level ¢ = 2.5.5.,10.25. 50, 75. 90, 95,97.5%, the corresponding neural
network confidence factor function f was tested as follows: For each site
independent samples of the size m were taken from a gamma distribution
with skew v, a sample mean j. sarnple standard deviation &, and sample

skew ¥ were computed, and a count was kept of how manyv times
B+ SF(3) > () (19)

held, from which the value of Q(%), given in (15), was computed for ¥ =
50.000. For each of the values of m = 10(10)30 a Table is given. For the

indicated values of ¢ and ~. these Tables report the values of

100{Q(7) ~ q] (20)
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for an independent simulations of 50,000 sites each. For example. Table 1
shows that the neural network function f for m = 10 and g = 90% gave
confidence limits of 90.3% if the true skew value was v = —0.75. while f
gave 89.9% confidence limits if v = +0.50.

Recall that the neural network was optimized to give accurate
confidence intervals for skew values of -1.0, -0.5, 0,0.5, and 1.0 for a specific
data set of 50.000 sites. The tests in the table include these values of skew
and the additional values -0.73, —0.725, 0.25. and 0.73, all for entirely different
data sets than the one over which f was optimized, Thus the tabulated
values indicate the probable accuracy obtained by using the neutral network
functions f. if the unknown site skew lies between -1 and 1, a plausible
assumption for many regions of the United States. F urthermore, additional
testing for some of the m and g values, using skews not in [-1.1] but in the
wider range [-2,2] gave curves which were indistinguishable from the curves
given below. showing that little accuracy was lost by restricting the range

of skew to [-1.1] when constructing the neural network curves.

ATTACHED TABLEL. TABLE?2, and TABLE3 TO BE INSERTED

HERE: SEE ATTACHED.

The neural network function f is plotted in the three graphs given
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below. for m = 10. m = 20 and m = 30. In each graph the family of lines
plotted intersect the vertical line ¥ = 2 with the function f for the value
g = 2.5% being the lowest curve. g = 5% the next highest curve. and so on.
For example. suppose a ¢ = 90% confidence interval is desired for a site of
m = 20 points. with the logarithm (base 10) of maximal discharges having
sample mean i = 3.4 (log cfs). a sample standard deviation g =0.2 and a
sample skew ¥ = 0.5. The value of f for ¢ = 90% can be read from the graph
for m = 20 as f(0.5) = 4.7 approximatelv. Thus the 90% confidence limit
for the logarithm of the 100-vear flood in log-space would be the number
3.4+4.7(0.2) = 4.34 for a discharge value of 1034 = 21,900 cfs; i.e. the
probability. in the sense of repeated sampling, is .90 that the true 100-year
flood value is no larger that 21.900. Some of the curves in Graphs 1-3 show
rather odd behavior for values of skew less than -1. The principle reason for
this will be discussed below, but in spite of this anomalous behavior, using
these curves gives the accuracy reported in Tables 1-3. There would be
perhaps a small improvement in accuracy, and certain sets of values would

definitely be more consistent, if the errant curves were interpolated by hand

it a smooth fashion.
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GRAPH1(M=10). GRAPH2(M=20). AND GRAPHS(M-_-BO) TO

BE INSERTED HERE: SEE ATTACHED.

A interesting comparison concerns the confidence values for
known skew given in [Stedinger, 1983] and [Whitley and Hromadka 1986a,
1986b]. The neural network function f is plotted in graph 4 for the jllus-
trative case m = 20 and ¢ = 90%. The dots represent the values of the
90% confidence factor if the skew is not estimated but is actually known to
have the values of skew indicated. So if in the numerical example discussed
above. the skew was known to be equal to 0.3. and not estimated, the 90%
confidence value can be calculated by using the dot value of 3.7 for a skew

of 0.5. and would be 3.4+3.7(0.2)=4.14, or 10 = 13.800 cfs.

GRAPH4, SAMPLE SKEW VERSUS KNOWN SKEW, TO BE

INSERTED HERE. SEE ATTACHED.

The curve in Graph 4 lies below the dots of the curve for known
skew if the sample skew is less than -1. This seems to 1mply that you are
worse off (the confidence interval is larger) if you know that the skew is, say,
-2. than if you only have the estimate -2 for the skew. This is puzzling since
you should be better off knowing the skew exactly. To understand why this

interpretation of the curves is incorrect, we must look at the problem of
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prediction that the neural network is designed to solve.

Consider the following sequence of skews v followed in parenthe-
ses by the approximate percentile of the number v itself in the distribution
of sample skews: 0(50%): 0.5(60%); 0.75(66%); 1.00(70%). From the point
of view of the predicting neural network, the sample skews tend to be less
than the underlying unknown positive skew; for example, 70% of the time
the sample skew from a distribution with an actual skew of one will be
less than one. Since the distribution of sample skews for a Pearson III dis-
tribution with negative skew v (and mean zero, which is the case for our
normalized simulations) can be obtained as the negative of the distribution
of the sample skews of a Pearson III distribution with skew —~. the per-
centiles given above for positive skews are reversed for negative skews: for
example. only 30% of the sample skew from a distribution with skew -1 are
less than -1. The neural network can be thought of as a two step process.
First, use the sample skew to estimate the unknown skew. Second use this
estimated skew to calculate the confidence limits. In the first step, there
are two competing factors: If the sample skew came from a distribution
with a positive skew, then since the sample skews are usually less than the

actual positive skew, a tendency which increases with the magnitude of the
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skew. the network needs to estimate a true skew to the right of the sample
skew to be used in the second step. A larger skew means a larger confidence
value. and this raises the f curve about the curve for known skew. If, on the
other hand. the sample skew came from a distribution with negative skew,
the estimate for the actual skew should be to the left of the sample skew,
making the confidence value smaller. The way in which the distributions
of the sample skews for various value of true skew interact is complicated,
but is summed up by the graph of the neural network function f. With
this is mind, reconsider the extreme example in which the sample skew
in Graph 4 is -2. The graph shows that for this relatively large negative
value there is very little contamination of sample skews by negative skews
from distributions with an actual positive skew. and therefore since the un-
known true skew is (probably) negative the corresponding estimate for the
unknown skew should be to the left of the sample skew. which makes the
confidence value smaller than if the sample skew were used as an estimate

for the unknown skew.

Conclusion
Confidence level curves f are calculated for upper confidence lim-

its for the 100-year flood when the yearly maximal discharge data is from
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a log Pearson III probability distribution. This is done by means of an un-
usual application of neural networks. These curves have been calculated for
confidence levels of 2.5%. 5%. 10%. 25%, 50%, 75%, 90%, 95%, and 97.5%
for sites with 10, 20. and 30 data values of yearly maximal discharges. The
user chooses the appropriate curve f. two curves if a two-sided interval is
desired. interpolates if the number of data, points m lies between 10 and 20
or 20 and 30, computes a sample mean A, sample standard deviation and
sample skew ¥ for the logarithms of yearly ;naximal discharges, from which
the confidence level for the logarithm of maximal yearly discharges is given

by:

&=+ o f(%). (21)

The accuracy obtained in using this estimate for the desired confidence level
has been tested and shown to be have the good accuracy displayed in Tables
1-3 under the assumption that the unknown value of the site skew lies in
the interval [-1,1].

It would be possible to extend the range of skew used in the
neural network simulations so as to cover a broader range of unknown skew

values, perhaps with not much loss in accuracy. It would also be of value
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to extend the range of data points m considered. Since a strength of neural
networks is in approximating functions of several variables. it might be
possible to extend the neural network and find one function of the three
variables of confidence level ¢, number of points at the site m. and sample
skew 7, and allow a single f to be used for & broad range of m. g, and <
values. avoiding interpolations. In fact we had this in mind when we began,
but had troubles enough with the one variable ¥.

While the accuracy obtained from the neural network is, we feel,
remarkable, computing the neural network curves involves a considerable
amount of trial and error to fit training data sets of 5. 000 to 13. 000 points
accurately, although once that is done the resulting curve always gives sat-
1sfactory test results for 50,000 independent data points. Not only is this
process somewhat tedious, but even with these large data sets we were not
able to obtain the accuracy we wanted for the 99.5%. and 0.5% confidence
limits which are needed to compute 99% 2-sided confidence intervals. How-
ever, work is in progress, using other methods which are less computation-
ally intensive and appear to be even more accurate than the neural network.

which we hope will allow the computation of more confidence levels and a

wider range of skew values.
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GRAPH 1. Confidence Factor m=10

GRAPH 2. Confidence Factor m=20

GRAPH 3. Confidence Factor m=30

GRAPH 4. Sample Skew Versus Known Skew
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TABLE 1: 100[Q(7) — ¢] for m=10

q=2.5 | q=5 | q=10 | q=25 | q=50 | q=75 [ q=90 q=95 | q=975
y=-100}| -04 | -09 | -04 | 04 | 402 [ 408 [ +05 [ -1.2 -1.3
y=-075| +04 | 402 | +0.7 { 405 | -05 | -0.3 | +0.3 | -090 -0.8
vy=-050| +04 | +04 | +1.0 [ 402 | -09 [ -16 [ 03 | -08 -0.6
y=-025| +03 [ +0.2 | +08 | 404 | -0.7T | -1.7 ] -06 | ‘09 -0.5
Yy=+000} +0.2 | 401 +08 | +03 | -09 | -1.7 | -05 | -08 -0.6
y=+025| -0.1 0L 407 403 [ 07 | -10 ] -04 | 0.8 -0.5
T=+4050| -04 -02 |1 +62}| +00 | -08 | -02 ] -01 -0.6 -0.3
y=+07¢ 03 | -03 | +06 | 403 | +03 | -02 | 400 [ -02 -0.3
y=+1.00| 06 | -04 | 401 | -2 | 4+0.9 | +1.2 | +1.0 | +05 -0.1

TABLE 1. Errors m=10

-4



TABLE 2: 100[Q(%) — ¢] for m=20

q=2.5 | q=5 | q=10{ q=25 | q=50 } q=75 | q=90 | q=95 | q=97.5
y=-100| +06 | -03 | 40.1 | +18 | +1.2 | -22 | +1.0 [ -0.8 0.9
y=-075}| +10 | 408 | 410 | +16 | +1.6 | +0.7 | +0.6 | +0.2 -0.3
v=-050 | +0.7 | +04 | +0.3 | 407 [ +1.0 | +14 [ +0.1 } 405 | -0.1
y=-025| +02 | -0.1 | -04 | -10 [ +03 [ 409 | -05 | +04 | -0.1
y=4+000| -04 | 04 | -11 | -1.7 § -0.4 | +0.1 | -0.9 | +0.0 | +0.0
vy=+4025| -06 |[-07{ -11 | -19 f -09 | -08 | -1.1 | +01 | +0.0
¥y=+4050 | -0.5 -04 | 038 -1.7 -1.3 -0.2 -1.0 | +04 +0.2
y=4075| -02 [ +00} +03 | 07 | +00 | 403§ -03 | +08 1 +05
vy=+100| +02 | +06 | +1.0 | +1.3 | +16 { +08 | +0.1 | +13 | +1.1

TABLE 2. Errors m=20

19



TABLE 3: 100[@Q(v) — ¢] for m=30

q=25 | q=5 | q=10 { q=25 | q=50 | q=75 | q=90 | q=95 | q=97.5
y=-100} +07 [ +14}| +1.7 ] -03 | -25 | -22 | +0.3 | -1.0 -1.0
y=—-0751} 407 | +14 | 417} -06 | +1.7 | +1.2 { +0.9 | 403 +0.1
v=-050] +04 [ +06 | +0.8 1 -1.1 | +21 | +153 ] +0.7 | +08 | FG.5
vy=-025} -01 | -04 | -02 | -16 [ +1.2 | 407 ] +03 | +03 | +0.0
y=+000] 04 | 08 | -14 | -18 [ -0.1 | -03 | -0.3 [ +0.0 -0.2
+y=+0257 -06 | -12 | -12 } -21 | -15 { -09 { -08 [ -0.1 -0.6
vy=4050] -02 | -05 | 407} -1.0 | -1.7 | -1.3 | -0.8 | +0.0 -0.7
y=+075| +02 | 40.2 | 401 { +0.2 | -0.7 -0.9 -0.4 | +04 -0.5
y=+100] 406 | +1.1 | +1.4 1§ +18 | +06 | +0.2 | +0.5 | +1.0 -0.2

TABLE 3. Errors m=30

29
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m = 20 data points
confidence levels 2.5,5,10,25,50,75,90,95,97.5 %
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m=230 data points
confidence levels 2.5,5,10,25,50,75,90,95,97.5%
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