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Abstract

The Stochastic Integral Equation Method (or SIEM) has been
shown to be a useful tool in analyzing modeling error associated
to rainfall-runoff hydrograph models. Not only does the SIEM
approximately develop a distribution of modeling error
realizations to be added to a modeling result as applied to a
runoff forecast, but the SIEM also enables rainfall-runoff models
to be compared on equal flooring as to which model is the "best
estimator" of a selected criterion variable (e.g., peak flow rate,
1-hour volume, etc.).

In this paper, the SIEM is analyzed with respect to
being applied as stochastic Toeplitz matrices. This application
not only simplifies the SIEM approach, but also illuminates
the theoretical underpinnings of the SIEM. A significant
advantage obtained by use of the Toeplitz matrix approach
over simply discretizing the SIEM equations, is that the SIEM
can now be directly coupled to rainfall-runoff computer models
by operating on the computer model's output of storm runoff
estimates.



Introduction

In Hromadka (1997), the Stochastic Integral Equation
Method (SIEM) is used to represent an arbitrary rainfall-
runoff modeling structure (of a free-draining catchment
such as described in detail in Hromadka and Whitley
(1989) and Abbott (1978)) and its corresponding modeling
error.  Because the entire runoff hydrograph is
mathematically analyzed, statistical analysis of the entire
modeling error realization is possible, and a spectrum of
different modeling structure types (e.g.,, HEC-1 Unit
Hydrograph, MITCAT, etc.; see Abbott (1978)) can be
compared as to bias and variance; that is, the modeling
structures can be ranked with respect to being the "best
estimator” (i.e., with respect to variance in modeling
estimates of a chosen criterion variable such as peak flow
rate, peak 1-hour runoff volume, etc.).

In this paper, the SIEM formulation is redeveloped
by introducing stochastic Toeplitz matrix representations
as a substitute for the stochastic integral equations of
Hromadka and Whitley (1989). This work serves the role
- of establishing a convenient procedure for coupling an
uncertainty estimation, based on the SIEM, to commonly
used rainfall-runoff computer models. Because the
procedure produces a statistical distribution of criterion
variable values (e.g., peak flow rate, total volume, etc.), the
computed results can be analyzed with respect to
confidence intervals or other statistical measures.

Mathematical Development

Let Q1(t) be the runoff hydrograph, for storm event i, as a
function of time, t. For a selected model structure type, let
Mi(t) be the model produced runoff hydrograph for storm
event, i. In our analysis, we assume that Mi(t) is of an




event that is not an element of calibration data used to
calibrate the model. Model error, for storm event i, is

Ei(t) = Qi(t) - Mi(t) )

Each of the components in Eq. (1) can be treated as a
realization of a respective stochastic process. To proceed
with our development, we discretize each realization with
respect to a constant and uniformly spaced unit period of
time, obtaining a histogram representation for each
realization; the unit period of time is chosen to be
"sufficiently small" such as to represent the characteristics
of each realization, and to begin with a unit period at time
t=0. The unit period values, for each realization, can be
assembled into respective nx1 column vectors such that
Eq. (1) is rewritten as

(E') =(Q)- M) @

where each component of Eq. (2) is a column vector
corresponding to the respective component of Eq. (1). At
this point, it is noted that Eq. (2) is fully defined, for a
given modeling structure realization. In order to develop
the SIEM for representing modeling error from an
arbitrary runoff model structure we will first focus upon
the well-known unit hydrograph technique in order to
develop the mathematics, and then we will return to an
arbitrary model structure of a free draining catchment.

Case Study: The Unit Hydrograph (UH) Method

Consider the unit hydrograph (UH) technique for
estimating storm runoff. Given rainfall excess, for storm
event i, noted as el(t), and a corresponding transform
realization for storm event i, wi(t), then runoff Qi) is
given by (issues regarding existence and uniqueness of the




realization wi(t), for storm event i, can be found in
Hromadka and Whitley, (1989)),

QI(t) =[ ei(s) yi(t - s) ds €)

s=0

Equation (3) is a convolution process which can be
rewritten as (for example, see Tsokos and Padgett, 1974),

Ql = el ® yi @

where in Eq. (4) it is understood the correspondence to the
integral of Eq. (3). Using the same unit time period
discretization used for Eq. (2), we can rewrite Eq. (4) as

Q' =ei® 5)

or, in matrix form,

Q1) = [yilel) ®)
where (Q1) and (el ) are nx1 column vectors, and [yi]is an

nxn square stochastic Toeplitz matrix,
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Note that [y!] is a square matrix in lower triangular
form, with all matrix elements defined by the unit period
values of the realization vector, yi. Also note that the
various vectors have the same dimension, n (which may
be achieved by extending the vector dimension using zero
entries). The matrix is Toeplitz because of its circulant
structure, where diagonal and off-diagonal components
are identical, respectively. A "stochastic" Toeplitz matrix
includes the property that the matrix components may
change for each particular event. The Toeplitz matrix
structure occurs due to the convolution process of (5).
Special properties of Toeplitz matrices included
commutativity in multiplication, and the existence of
inverses.

In forecast mode, the transform of Eq. (3) obviously
cannot be known beforehand and so an estimate of the
realization, yi(t), is used, namely the catchment unit
hydrograph, u(t). Thus the UH model estimate of the
runoff hydrograph for storm i is, in a matrix form
consistent with the above,

(MEIH) = [u](el) ®)
Thus, the UH modeling error for storm event i is, in

matrix form, given by the vector, E!', where with respect

to Egs. (2), (6), and (8),
E' = Q- My &)

Let [|3i] be another nxn stochastic Toeplitz matrix (see the
form of the matrix in Eq. (7)) defined by

[wi] = [B] [u] (10)

where
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Then the matrix product of Eq. (10) is given by
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which is another nxn square matrix, in lower triangular
form, with the same column vector relationship as the
Toeplitz matrices of Egs. (7) and (11).

Combining Eqgs. (6) and (10),

@) = [B [ul ') (3
Combining Eqsf{S) and 13),
Q) = [B1 Mbu ) (14)

We are interested in the modeling error from our
selected UH model structure. For storm event i, Eqgs. (9)
and (14) are combined to give,

(D) = (Q") - (Ml ) = [B] (Mby )= [1 (Mt ) 15)
where [I] is an nxn identity matrix; and modeling error for
storm event i, E', depends on the particular rainfall-

runoff computer model selected for use. Then another
nxn Toeplitz matrix, [a!]; is defined by

(E') = [ad] (ME}H ) (16)
where from Egs. (14) to (16),
[B1] =[1] + [od] (17)

From Eqs. (14) and (16), the modeling error for
storm event i is represented by the convolution matrix,
[od], which is readily resolved by forward substitution
applied to either Egs. (14) or (16). It is noted from (15) that

modeling error for storm event i, E!, is given by the
subtraction of the computed results from the runoff data

as shown in the left side of (15). The matrix [ od] is defined
by (16) with the requirement that the computed runoff




by (16) with the requirement that the computed runoff
initiates with nonzero values at or prior (in model time)
to the occurrence of nonzero values of measured runoff,
Qi

In practice, given a statistically significant set of m
stochastic Toeplitz matrices, {[o!]; j=1,2,+,m}, developed
from m storm events that are not elements of the
calibration events used to develop the UH model, an
estimate of the modeling error stochastic distribution
associated to our UH model, as applied to a forecast storm
event (i.e., a future event), would be a set of m

realizations, {(E) ); j=1,2,--,m} where
(B) = [od] (M1 ); j = 1,2, m (18)

and (M) is our predicted runoff, from our UH model,

for forecast storm event, P.

Similarly, the stochastic distribution of runoff
hydrographs (to be considered as an estimate of the
stochastic distribution of realization outcomes from our
UH model) is, in matrix form, approximately given by the

set of m discrete outcomes, {(Qj ); i=1,2,--,m} where
Q) =B MBy )j=12,m (19)

where each [Bj] is defined from Egs. (11) through (14); and
(MBH ) is, again, the predicted single outcome from the
UH model for forecast storm event, .

A stochastic distribution of convolution matrices

{le, and also [ ], can be generated by noting Eq. (19) can be
rewritten as




@ =[B1ME ) =[BT [ul P);j=12,m 0)

where (e P) is the column vector representation of the

forecast storm event, P, rainfall excess. But from Eq. (10),
we can rewrite Eq. (20) as

@ =1eP);j=12,m @1)

which is the stochastic matrix representation precisely
equivalent to the SIEM formulation for the UH modeling
approach (Hromadka and Whitley, 1989).

In summary, what is important in the above case
study is that rather than dealing directly with the UH
model v realizations, we can introduce another
convolution to represent the modeling error trends. That
is, this SIEM formulation deals with a particular model's
modeling runoff hydrographs (see Eq. (20)) rather than
dealing with the model's modeling input of rainfall excess
(see Eq. (21)). Consequently, UH model computed results
of runoff can be directly reformulated into a stochastic
distribution of runoff hydrograph realizations (see (20)),
rather than generating a stochastic distribution of runoff
hydrograph realizations by formulating a stochastic
distribution of UH realizations (see (21)). This useful
result can be applied to other rainfall-runoff computer
models such as demonstrated in Hromadka (1997), and
also briefly described in the following section.

Arbitrary Model Structure

Similar to the previous case study of a UH model, we will
now relate an arbitrary model's history of runoff
hydrograph modeling errors to the modeled runoff
hydrograph by a convolution, given




(E))=@)-M)); j=12,,m 22)

where all terms are as defined and conditioned
previously; and M refers to a particular rainfall-runoff
model structure (for a free-draining catchment per
Hromadka and Whitley, 1989). Note that in Eq. (22), the

term ( Eth) is not the same as used in Egs. (2) and (15), as

they are model dependent.
Then, convolution matrices are defined by (see Eq.

(16)), solving for [ocg/[] in the relationship
ja._ el '

where the subscript M indicates modeling structure
dependency; and i is a given storm event not used in a
calibration of the selected model. For m such storm
events (typically, such storm events are selected to be
"similar” or of the same "class" as the forecast storm event
to be analyzed), and a set of stochastic Toeplitz matrices

result, {[oc] ; j=1,2,+m).
In forecast mode, an approximate distribution of

model structure M outcomes is given by the discrete set of
runoff hydrographs,

(QUp=MP) + (E{p; j=12+,m} (9
where MP is the model structure M runoff hydrograph

estimate (in vector form) for future storm event, P; and
the other terms are defined previously.

Given this last result, a statistical analysis can be
conducted on a particular criterion variable, such as peak
flow rate, to determine the "best estimator".

Accompanying Eq. (24) are other topics for future
research, such as filtering the stochastic estimates, or




whether constraints on the Toeplitz matrix components
improves forecasting results in estimating storm runoff.

Application of the Stochastic Toeplitz Matrix Formulation

In order to demonstrate the presented matrix formulation
of the SIEM, three example problems are presented below.

Example 1.

Suppose that for historic storm event i, and arbitrary
model structure M, the error vector (Ey)) is a zero vector.
Then [OL}VI} = the zero square matrix satisfies this condition.
i .
Thus, from Eq. (17), [Bm] = [I] for this single event.
Assuming further that the above zero error vector
occurred k times in m storm events analyzed, then from
Eq. (24), the distribution of discrete stochastic outcomes
would demonstrate a k/m occurrence of the zero

modeling error realization when the model M is applied
in forecast mode.

Example 2,

Suppose that for storm event i and model structure M, the
error vector (Eyp) is a simple proportion of the model
estimated runoff hydrograph vector, (M"); that is, (Eyp) =

Alv? ), where Al is a constant real number for historic

storm event i. Then [ah] = AL[I] satisfies this condition,
and [va{] = (1+ AD[I]. That is, for storm event i, Q) = (1 +
M) [ (M'). Assuming further that, for m storm events,

the error vectors continue to be simple proportions (but




random and mutually independent between events) of
the model runoff estimates, for each event i, then the
distribution of stochastic outcomes, associated to a forecast
storm event P, is approximately given, from Eq. (24), by

the set of discrete realizations {(Ql\}.d) = (MP) + (EK/I) = (1+

M) (MP); j=1L2,-,m}. Note that in this example, the

values AJ; j=1,2,...,m are a simple random sample (of size
m) of a random variable, A, and hence standard statistical
analysis techniques can be directly applied to the analysis
of the distribution of modeling error realizations.

Example 3.

In this example, we will demonstrate how a UH model
output runoff hydrograph can be convoluted with a [{i]
Toeplitz matrix (see Eq. (14)) and the resulting runoff
hydrograph is identical to the runoff hydrograph had a
storm dependent unit hydrograph [yi] been used (see Egs.
(3) to (8)).

Consider the vectors u = (1,2,0,0,0), wvi=(23,000), ¢ =

(1,1,2,1,0), Q' = (2,5,7,8,3), Iv{nif (1,3,4,5,2), where all

vectors are as defined in the previous text.
Here, the "correct UH", for storm i, is ', whereas our UH

model is using u. Then the UH model error, for storm

event i, is B! = Qi = MUiI—I =(1,23,3,1). From Eq. (16) we set

E =[0d] M1 , Oor
e ~UH
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giving, by forward substi_tution, (e, o, og,00, os) = 11,1,
2,-4,8). From Eq. (17), [$'] = [1] + [od], and (B1, B2, B3, B4, B5)
=(2,-1,2,-4,8). From Eqs. (10) to (12), [B!] [u] is given by

- | 20000l /10000] | 20000 |
| 12000l121000]| | 32000 | _
[BIMl=] 2-1200/1021001/=]03200 k[y]

| 4212000210 | 00320 |

| 842-12llo00021] | 00032 |

(26)

This example demonstrates how the model output runoff
hydrograph can be used directly to evaluate modeling
error rather than determining the storm event W' vector.




Conclusions

The Stochastic Integral Equation Method (or SIEM) has
been shown to be a useful tool in analyzing modeling
error associated to rainfall-runoff hydrograph models.
Not only does the SIEM approximately develop a
distribution of modeling error to be added to a modeling
result as applied to a forecast, but the SIEM also enables
rainfall-runoff models to be compared as to which model
is the "best estimator” of a selected criterion variable.

In Hromadka (1997), the SIEM is used to represent
an arbitrary rainfall-runoff modeling structure (of a free-
draining catchment such as described in Hromadka and
Whitley (1989)) and its corresponding modeling error.
Because the entire runoff hydrograph is mathematically
analyzed, statistical analysis of the entire modeling error is
possible, and a spectrum of different modeling structure
types (e.g., HEC-1 Unit Hydrograph, MITCAT, etc.) can be
compared as to bias and variance; that is, the modeling
structures can be ranked with respect to being the "best
estimator” (i.e.,, with respect to minimum variance in
modeling estimates of a chosen criterion variable such as
peak flow rate, peak 1-hour runoff volume, etc.).

In this paper, the SIEM is analyzed with respect to
being applied as stochastic Toeplitz matrices. This
approach not only simplifies the SIEM approach, but also
illuminates the theoretical underpinnings of the SIEM.
Current research underway includes using the stochastic
Toeplitz matrix setting in mathematically representing
link-node model structures, and examining uniqueness
and existence properties of unit hydrographs given
rainfall-runoff data. Also being studied are
regionalization procedures to normalize the error




transforms so that the modeling error distributions can be
applied at ungauged catchment locations.
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