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Abstract

In practice, runoff peak flow rates are typically estimated by the Rational
Method, a design storm unit hydrograph (UH) method, or a statistical regression
equation. In this paper, the balanced design storm UH procedure (HEC Training
Document 15) is used to derive a Rational Method peak flow rate equation that,
in turn, is used to derive a regression equation. This new mathematical linkage
across these three widely used peak flow rate estimation techniques provide
foundation as to how these approaches differ or agree, and may also provide an
answer as to which method is "best"; specifically, the methods are essentially the
same for many practical conditions, and where they differ, the underpinnings of
their mathematical structures is illuminated.
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INTRODUCTION

The Rational Method continues to be a widely used runoff peak flow
rate estimator for designing small drainage facilities (Hromadka, et al, 1987,
Hromadka et al, 1994, among others). The unit hydrograph (UH) balanced T-
year design storm method, as described in the U.S. Army Corps of Engineers
Training Document 15 (or TD-15, 1982), is another widely used technique for
estimating peak flow rates, and involves considerably more computational
effort than the Rational Method. Additionally, HEC TD-15 has been adopted,
with modifications, as the basis for a number of recently developed Hydrology
Manuals for county flood control agencies (see Hromadka et al, 1986, 1987,
1992, among others). Peak flow rates are also estimated by statistical
regression equations (e.g., the USGS equations) that are calibrated to local
runoff data.

In this paper, the balanced design storm UH approach is used to
mathematically derive a Rational Method equation for the two cases of (1)
catchment areas less than 1 square mile (also see the derivation contained in
Hromadka, 1995), and (2) catchment areas greater than 1 square mile. It is
shown that peak flow rates developed from the well-known TD-15 (1982)
balanced design storm UH method are equal to Rational Method peak flow
estimates, except that the underlying normalized UH (or S5-Graph) results in a
new constant to be multiplied to the usual Rational Method mean rainfall
intensity. The linkage developed herein between the Rational Method and
the balanced design storm UH method also depends upon the loss function
used. The widely used phi-index (constant loss function) approach and the
constant proportion loss functions are considered. The mathematical
development results in a simple modification of the standard Rational
Method equation structure, with the introduction of a fixed constant
(multiplied to mean rainfall intensity) that corresponds to the parent
normalized UH (or 5-Graph type) and also the rainfall depth-duration log-log
exponent. For areas greater than 1 square mile, the effects of depth-area
adjustments are included, resulting in a peak flow rate estimator that
corresponds to the typical regression equation structure. Although it is
oftentimes conjectured that there exists a linkage between the three
considered peak flow rate estimators, it appears that a constructive



mathematical derivation across these different peak flow rate estimators has
heretofore not been presented in the open literature.

MATHEMATICAL DEVELOPMENT

In the following, a Rational Method peak flow rate estimator is derived
from the balanced design storm UH method (of HEC TD-15). This derivation
is presented in detail in Hromadka (1995). Only the key steps are presented
herein for the reader's convenience, so that the subsequent extension to
regression equations can be better seen.

1. Unit Hydrographs

Unit hydrographs (UH) for a catchment may be developed from
normalized S-graphs (Hromadka and Whitley, 1989; HEC TD-15, 1982).
Generally, S-graphs can be developed that apply across large regions; for
example, several county-wide hydrology manuals use S-graphs that apply to
mountain, desert, foothill, or valley area catchments (see Hromadka, 1986,
1987, 1992). The S-graph is typically expressed by S(§) where /is a proportion
(percent) of catchment lag, where catchment lag can be related to the
catchment time of concentration, T¢, by (Hromadka et al, 1987)

lag = T (1)
where v is a calibration constant. Then S(4) =5 (%Q) , where the UH is
c
expressed as a function of Te.

For Tc =1 and catchment area A =1, a normalized UH results, U(t).
For T # 1 or A # 1, the catchment UH, u(t, T¢, A), is given by

B) = u(t,T,A) = A Ut 2)
so-sren -0
where by definition,
f u(t, Te, A)dt= A [ U(TE;)%—E=AUO (3)
0 4]

where U, is a constant; and where u(t, T, A), may be written as u(t).



2. Rainfall Depth-Duration Relationships

Precipitation depth-duration relationships, for a given return
frequency, is generally given by the power law (Hromadka and Whitley, 1996),

D(z) = atP (4)

where a>0 is a function of return frequency, and is assumed constant for a
selected design storm return frequency; "b" is typically a constant for large
regions (e.g., entire counties); D(1) is the rainfall depth corresponding to peak
duration 1; and 7 is the selected duration of time of peak rainfall depth.

Mean rainfall intensity, I(t), is
I(t) =1 D7) = ach1 )
and instantaneous rainfall intensity, i(t), is

i@:%D@:@&umm. (6)

It is noted that I(t) is the usual mean rainfall intensity used in the Rational
Method for a T. value of 1.

The balanced design storm effective rainfall pattern (i.e., rainfall less
losses, or rainfall excess), e(t), is a function of the instantaneous rainfall which
is formulated into a nested storm pattern as described in HEC Training
Document 15 (or TD-15 (1982)). Figure 1 illustrates an extension of the TD-15
balanced design storm pattern that is defined to have a peak at storm hour 16
(rather than at hour 12) and where rainfall is uniformly distributed with 2/3
of its mass preceding the peak (rather than being symmetrical about the peak).

With respect to Fig. 2, the nested design storm rainfall intensity can be
resolved into components it(t*) and i°(t7), respectively.

For a proportioning of rainfall quantities by allocation of a 8-
proportion ( for all durations) prior to time t* = 0 (see Fig. 2 for the case of 8 =

2/3), instantaneous rainfall intensities are given by



i"(t7) = i7(8t) = i(t) @)
or

i"(t) = 1(;—) = (é)‘” i(t-) (8)

Similarly,
P*+(t+) =(L)""‘l i(t) )
1-6

In the above, the HEC TD-15 balanced design storm instantaneous rainfall
intensities, given a power law relationship of (6), is obtained by 6 = 1/2.

3. Peak Flow Rate Estimates from the Balanced Design Storm
Unit Hydrograph Procedure and the Rational Method

Let v(t) = vinTc-t) where v(t) is a time-reversed plot of the UH, u(t), and
Xo =NT¢ is the total duration of the UH where n is a constant for a given S-
graph. From Fig. 2 and, in order to obtain a peak flow estimate, aligning the
UH peak to occur at time t* = 0 (see Fig. 1),

vHEH = u(Tp-th), 0 St < Tp (10)
V-(t—) = u(Tp'i‘t-), O <t S Xo - Tp - T]TC = Tp (11)

where Tp is the time-to-peak of the UH. Then the peak flow rate from the
balanced design storm UH procedure (in this case, for a constant loss rate
"phi-index" model) is given by

Tp MTeTp
Qp =[ et(tt) vH(t+) dt+ + [ e (t) v-(t7) dt~ (12)
=0 £=0
or

Tp MTe-Tp
Qp =[ iT(t*) vr(t) dtt + f i(t7) v(t) dt
0

Tp MTe-Tp
-¢ j vH(th) dt*+] ve(t) dt (13)
0



where in (13), a "phi index” (or constant) loss function is used to compute
rainfall excess; also, a necessary constraint imposed is that inTe) = ¢.

Introducing a local time coordinate s defined by

S = (14)

t
Te
then t = sT,, dt = T ds.

The balanced design storm instantaneous rainfall intensities, i*(t¥), can
be rewritten in terms of st (analogous to t¥) where st = t£/T; by

i*+(t+) = (—1—)"" ab(s+T b1 = (L}b'l i(s+) (15)
1-8 1-8
and

i(t) = (%)b-l i(s7) (16}

For a given S-graph, tp and 1 are constants. For a given precipitation
region, log-log exponent "b" is a constant. Following the derivation
presented in presented in Hromadka (1995), Eq. (13) can be simplified by
including (5) as

Qp = [al(T,) - $UolA (17)
where @ is a derived constant for the given S-graph and precipitation region.

In English units, Up =1 and Qp [aI(T.) - 0]A, which is the usual form of
this type of Rational Method peak flow rate estimator.

Another popular loss function is a constant proportion loss rate given

by

e(t) = ki(t) (18)
where k is a constant dependent upon catchment land use and soil cover.

Using (18) and (13) and repeating the above mathematical derivation
results in the balanced design storm UH procedure peak flow rate estimator,
Qp- given by

Qp = kal(Te) A (19)
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where in (19), o is the same constant (and same values) used in (17). The
corresponding Rational Method peak flow rate estimator, Qg, is Qg = kI(T.) A.
Note that in (17) and (19), the shape factor, 8, used to define the balanced
design storm shape in (8) and (9), is absorbed into the single constant o.

It is noted that the derived constant, a, is a function of only the S-graph
type (e.g., mountain, valley, desert, etc.) and the regional rainfall log-log
equation exponent (which typically is constant for large regions). The reader
is referred to Hromadka (1995) regarding application of (17) and (19), and the
calibration of the constant o to the balanced design storm UH method.

4. Including Rainfall Depth-Area Effects

The balanced design storm UH procedure includes rainfall depth-area
effects for catchment areas greater than 1 square mile (see HEC TD-15). Depth-
area adjustment reduces area-averaged T-year point rainfall values according
to catchment area. Several California flood control agencies (see refs. 4, 5, 6, 7)
use depth-area curves derived from a major regional storm called the Sierra-
Madre storm event (California) of 1943. The 1- and 3- hour depth-area curves
are plotted in Fig. 3 and demonstrate a strong logarithmic relationship

A(A) = eAf (20)

where e and f are constants, A is the catchment area, and A(A) is the depth-
area adjustment factor for a given peak storm duration. Such a logarithmic
relationship is typically found in most depth-area curve sets. The influence
of either curve (shown in Fig. 3) upon the balanced design storm UH method
peak flow rate strongly depends on the catchment area and the time of
concentration, T.. For T; values less than about 2 hours, the 1-hour depth-
area curve provides the dominant influence. For T, values greater than 2
hours (and less than 5 hours), the 3-hour depth-area curve provides the
dominant influence. For simplicity, we will focus on T, values less than 2
hours {(and where the 1-hour depth-area curve is dominant); this case applies
for the majority of runoff studies in California that use the Sierra-Madre
depth-area curves (obviously, the 3-hour depth-area curve, or other duration,
can be used accordingly in the following development). Depth-area



adjustment is accomplished by multiplying the depth-area factor with the
rainfall, and then using the modified rainfall values for loss rate calculations.

By combining Egs. (17) and (20), a peak flow rate estimator is (for
catchments greater than 1 square mile, and T¢ less than 2 hours):

Qp = [aeAf(Ty) - 0]A (21)
Similarly, combining (19) and (20) gives
Qp = ekal(Te) Al+ (22)

Equations (21) and (22) provide an extension of the Rational Method to larger
catchment sizes, and is mathematically derived from the extended HEC TD-15
balanced design storm UH method peak flow rate estimator.

5. Linkage to Peak Flow Rate Regression Equations

By substituting (5) into (21) and (22), respectively,

Qp = [aeaAKTIP-1- 9]A (23)
or
Qp = aEku(Tc)b_l A1+f (24)

The U.5. Army Corps of Engineers use an estimator for catchment lag of the
form (see refs. 1 through 9)

: B
_ L-Lc}
lag = 24n|— (25)
where

n = basin factor, representative of system's hydraulic

response (selected from a calibrated set of values);
L = length of longest watercourse;
L. = length along longest watercourse to catchment

centroid;
S = slope of longest watercourse;
B = calibration exponent (constant).
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Use of (25) is usually appropriate for larger catchments where depth-area
effects are also important. From (1) and (25), an estimator for T is

B
_m(L‘Lc)
Te=2MF (26)

where s = H/L, where H is the drop in elevation along the longest
watercourse. Then,

Te = -2-4% 13B/2 1. B /2 27)

Equations (24) and (27) can be combined as

Qp = aeko, (%)‘b‘” L3B0b-1)/2 1 Blb-1) HB(L-b)/2 Al+f (28)

A similar extension for Eq. (23) follows directly.

In Eq. (28), the several parameters are included for rainfall (a,b), depth-
area effects (e,f), loss rate (k), normalized unit hydrograph type (o), balanced
design storm shape (8), catchment timing via a lag estimation (n,L, Lo, H,B, v,
and catchment area (A).

A power law regression equation corresponding to (28) is
Qreg =Co LP1 L2 HP3 AP4 (29)

Assuming that the ratio L./L is approximately constant (true for watershed
having similar shapes), and recalling that catchment slope S = H/L, (29) may
be rewritten as

Qreg = CO Lp Sq AI' (30)

which is of the form of many peak flow rate regression equations in use

today.

Equation (30) completes the constructive mathematical linkage
between the Rational Method , the balanced design storm UH method as
presented in HEC Training Document TD-15 (1982), and peak flow rate
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regression equations for both small and large catchments. Although many
regression equations use a daily or annual precipitation value, such a variable
can be included directly in (30).

CONCLUSIONS

Runoff peak flow rates are typically estimated by the Rational Method,
a design storm unit hydrograph (UH) method, or a regression equation. In
this paper, the balanced design storm UH procedure is used to derive a
Rational Method peak flow rate equation that, in turn, is used to derive a
regression equation. This new linkage across these three widely used peak
flow rate estimation techniques provide foundation as to how these
approaches differ or agree, and may also provide an answer as to which
method is "best"; specifically, the methods are identical for most practical
conditions, and where they differ, the underpinnings of their mathematical
structures is illuminated. (From the practitioner's viewpoint the "best"
method may be based on the availability of hydrologic data; scope and level of
detail called for by a study; or time and funds available.) The fact that all of
the above three cited techniques continue to be widely used for peak flow rate
estimation by flood control public agencies demonstrates the utility of the
three methods in practice. It is anticipated that the derived mathematical
linkage will initiate research into improving all three modeling approaches
by inverse methods in parameter estimation (i.e., having calibrated one of the
three techniques, the other two techniques can be calibrated), among other
topics.
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