ELSEVIE

PH:50955-79972(97)00069-6

Engineering Analysis with Boundary Eiements 20 (1997) 337-339
© 1998 Elsevier Scicnce Lid. AM rights reserved
Printed in Great Britain

0955-1997/97/$17.00

Research Note

Fractal basis functions and the CVBEM

T.V. Hromadka II** & R.J. Whitley”

a1.'){3‘53a,nmenr of Mathematics, California State University, Fullerton, California 92634, U.5.A.
Department of Mathematics, University of California, Irvine, California 92616, U.S.A.

(Received 21 March 1997; accepted 6 June 1997)

The Complex Variable Boundary Element Method or CVBEM has recently been
applied to the use of new fractal basis functions for defining a global trial function on
the problem domain. In that recent advance, a topic for future research was the need
for development of an algorithm to construct a global trial function that converges to
the true problem boundary conditions, assumed te be continuous on the boundary, In
this paper, such an algorithm for constructing a sequence of fractal basis functions is
presented. © 1998 Elsevier Science Lid. All rights reserved.

1 INTRODUCTION

The Complex Vartable Boundary Element Method
(CVBEM) is a complex variable function approximation
method that develops an approximator, &(z), that is com-
posed of a par of two-dimensional functions,
&(z) = d(2) + iY(z) where @(z) and @(z) are both harmonic
conjugate functions and hence exactly satisfy the Laplace
equation, Several papers and books (e.g. Ref. ') develop the
CVBEM in detail. The focus of this note is the development
of a mathematical equation that links a function, w(z),
analytic in a simply connected domain, 2, with a simple
closed boundary contour, I', {0 a series expansion of w(z)
using fractal basis functions. The series expansion includes
a direct representation of a discretization algorithm which is
more explicit than that of Hromadka and Whitley.?

1.1 Complex function integrals

The boundary curve I', of length L, with parametric equation
=81, 0=t ={, will be assumed to be smooth with {(r)
having a continuwous nonzero derivative {'{f) at every point
O0=r=¢{.

Consider the partition, of a smooth curve I, by » points
Co- 610 €2, ..., &, posttioned consecutively along T' in the
counterclockwise direction. Form the partial sum, §,,
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where f(z) is a complex function defined over a domain Q
containing I', A{; = {; — {;_|; and v, is a point in T' in the
arc from {;_; to {. For an integrable function f, for exam-
ple f continuous on T', the following limit exists:

lgg)j;fw,-)arj:a—Lf(z) dz 2)
independent of the choice of points {; and v;, where & is the
maximum value of the lengths AL, j=1,2, . n

If I' is smooth, being composed of m smooth curves
Ir,r,, .., I, joined end to end (i.e. a piecewise smooth
curve), then

J-Ff (zydz= J‘rff () dz+ Jrzf (z)dz+ ...+ J'[\mf (z)dz
(3)

1.2 Fractal basis functions and bisection partitioning of
boundary I

Let z, and z, be two successive points, in the usual positive
direction, on I". Then a linear fractal basis function is
defined, on the arc C, of T, bounded by z, and z,, by
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The extension of a linear fractal basis function 10 a con-
stant, parabolic, cubic, or other basis function is similar.

A sequence of successive bisection of arcs in I' can be
used to add partition points on I, and thereby define a set of
fractal basis functions.

First, a reference point, {7, is located on I'. The arc C ), is
all of I, beginsning and eading at point {|, transversed in the
usual counterclockwise direction.

The first fractal basis function is denoted by

2
A

where point { serves as both the beginning point and end-
point of arc C;, with midpoint §, € I (the midpoint of arc
C), is located a distance €,,/2 from ), as measured along
Cy\, where €, is the arc fength of C ;). The second pass in
partitioning I results in locating two more points {; and {4
in ' where {3 is the midpoint of arc C,, and {, is the
midpoint of arc C;,. The corresponding fractal basis func-
tions are

3
Pz (9]
and

4
A,

respectively. The third pass in partitioning T" results in
locating four more points, {5, {s {7 {3 at the midpoints
of arcs Cyq, C3a, Ca4, Cyy, respectively.

The above method of partitioning T’ results in a set of
partition points, each adjacent pair being at the same
arclength distance from each other, for each iteration of
the algorithm. Practically speaking, it is more convenient
to partition [0,1] by O=15 <<t; <1ty <1 and use {;={(s;)
as partition points on T'.

1.3 Global fractal function, G({)

Consider a continuous function, w(z), defined on a domain {2
that contains a piecewise smooth curve, I'. For any partition
of T, by n points ¢y, s, ..., {, placed successively in the
positive direction along T', a global trial function, G({),
can be defined for ¢ € T by a sum of fractal basis functions
weighted by point values of w{z):

k
G($)= L_;Awm] wk ()
where wy = w({3), with wg = w,. This fractal basis function
is analogous to the usual linear polynomial basis function
approximation, but in the usual approach, all points
{k, 1 f-k, {k+ | &re defined lﬂltla”)’

Another approach is to use an algorithm that describes a
sequence of successively finer partitioning of I', where the
fractal basis function is weighted by the difference between
the newly added partition point value, w({), and, for the linear
basis function, the linear approximation (w({,) + (w({5))/2.

For the bisection partitioning algorithm, the sequence of
successive partitioning passes result in the global fractal
fupction. Given the inittal point {; €' with value
wy =w({)),

w0 zﬁ*J L
GH=oi+ 2. 2 8LA®R) ©)
k=tu=1 "%
where k is the bisection algorithm partition pass number;
for this k-th pass, 2*! points are added, namely all the
points halfway between the points already in the partition;
d,, ds d, are the arc distances, along I', in the positive
direction, from imitial point {; € I' to partition points ¢,
tw $n given by d,=@u—DL2*7', d =uli?"!,
d,=(2u— 1)L/2*, respectively; and &, is the weighting
defined by

w(E)+ ()
o 7

After ky passes the remainder of the series, Ry ({), is given
by

5:3:““’(&)—

0 k1 \
R(y= 2 X A, (8)
k=kp+Yu=1 )

with the truncated global fractal function

k“ 2!-! .
G =wi+ 2 > 3L AQ). ©)
k= 1 =1
Suppose that w satisfies a Lipschitz condition on I':
laa(z)) = w(z2)l = Mz, — 25l (10}

for some constant M and all z, and z, on I'. This will be
true, for example, if the derivative «’ exists and is contin-
uwous, and therefore bounded on T'.

In this case the sum

2 .
- ' 11
S u; B A (D) (11)
has only two non-zero terms; the factor
t
A)
is bounded in absolute value becawse the curve is smooth
1
fA{(DF=B (12)
Ts
and
V) e w({) - w(g‘r) w(iy) - ‘-’-’(g's)l < M 13
lot,) = S o S E W
hence
BM
15l = ST (14)

and so the series for G,.({J converges absolutely and
uniformiy on I
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1.4 Complex Variable Boundary Element Method
"BEM)

The CVBEM approximator, &(z), defired inside the pro- -

biem domain, £, with boundary, T, is

1 Gt

B() = 2T -z

L 2EQ (15)

I w(z) is analytic on @ U T, then for z € 1,
1 J Gi, ()5 | 1 J Ry, ()¢
r

w(z) = — -z

2xi
The typical CVBEM application involves a problem
domain where increased accuracy can be obtained by
irregular placement of nodes, an aspect which we will
now neglect.
The CVBEM approximation can be expanded for z € {2
by

ZEQ (16
v ¢—z @ 27 z (16)

Lf G, L[ &
r (—z o ré—z

2xi
1
h 2! : A(r)dr 1 J d§
+Irk§,§lém f—zjzw'(ﬂf 1“;2)

W 27 o A
+ 5‘4 =
kg-l u=1 Cr § -

(a7

uue 10
L
A)=0for § & Cy

The first integral in the eqn (17) expansion s 2xi.
To integrate

{
j Ay
Crs ;_Z(‘
consider the typical sitvation that C, is a line segmemt
connecting {; and {,. Then, & = (& + (M2, and

A®

given by eqn (1) is

O; & Cy
(&~
l €8 reg,
A={ -5y '
(fs - i')_
=gy fE6

where C,, = CqU Cy. and C, N Cys =
Consequently, for z € Q,

[ AR /g
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_ — ) —Inft, —
( Sys_g,t)(ln(fs - In(§, ~ 2)

where the logarithm used must have its branch cut pre-
scribed as described in Ref. .

)(ln(i'; =)~ In{{; - 2))

2 CONCLUSIONS

A new algorithm for constructing a global trial function by a
sequence of fractal basis functions is presented. The series
converges to the true problem boundary conditions, under
mild conditions of continuity. Because of the series repre-
sentation structure, error evaluation of the approximation is
readily achieved by using standard series evaluation tech-
niques, given that the solution to the boundary value prob-
lem satisfies a Lipschitz condition on the problem boundary
(see eqns (8) and (14)).
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