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Abstract

Issues regarding rainfall-runoff modeling complexity and the apparent
lack of success in achieving significant further improvement in modeling
accuracy is well documented. In this paper, a multi-linear unit hydrograph
approach is used to develop subarea runoff, and is coupled to a multi-linear
channel flow routing method to develop a link-node rainfall-runoff model
network. The spatial and temporal rainfall distribution over the catchment is
equated to a known rainfall data source located in the catchment in order to
account for the random nature of rainfall with respect to the rain gauge
measured data. The resulting link node model structure is a series of
stochastic integral equations, one equation for each subarea. A cumulative
stochastic integral equation is developed as a sum of the above series, and
includes the complete spatial and temporal variabilities of the rainfall over
the catchment. The resulting stochastic integral equation is seen to be an
extension of the well-known single area unit hydrograph method, except that
the model output of a runoff hydrograph is seen to be distribution of
outcomes (or realizations) when applied to problems involving prediction
(rather than reconstitution) of storm runoff.

1 Senior Managing Editor, Failure Analysis Associates, 4590 MacArthur
Boulevard, Suite 400, Newport Beach, California 92660-2027 and
Professor of Mathematics and Environmental Studies, Department of
Mathematics, California State University, Fullerton, CA 92634-9480

<



Introduction

Issues regarding rainfall-runoff modeling complexity and the apparent
lack of success in achieving further improvement in modeling accuracy is
well documented (for example, Jakeman and Hornberger, 1993; Loague and
Freeze (1985); Hornberger et al, 1985; Hooper et al, 1988; Beven, 1989:
Hromadka and Whitley, 1989). An apparent barrier to improvement in
rainfall-runoff modeling accuracy is the unknown temporal and spatial
distribution of rainfall over the catchment. Raines and Valdes (1993) state
that "...the estimate of the rainfall parameters is the most subjective task and
seems to be responsible for the major sources of error...".

In this paper, the unit hydrograph approach is used to generate
catchment subarea runoff which is then coupled to a multi-linear channel
flow routing analog to develop a link-node rainfall-runoff model network.
Jakeman and Hornberger (1993), observed a “predominant linearity in the
response of watersheds over a large range of catchment scales even if only a
simple adjustment is made for antecedent rainfall conditions. The linearity
assumption of unit hydrograph theory therefore seems applicable in
temperate catchments and works just as well for slow flow as for quick flow."
The spatial and temporal rainfall distribution over the catchment is equated
to a known rainfall data source in the catchment (i.e., the rain gauge) in order
to account for the random nature of rainfall with respect to the measured
rain gauge data. The resulting link node model structure is a series of
random integral equations. A summation stochastic integral equation is
synthesized from the above series that includes the complete spatial and
temporal variabilities of the rainfall over the catchment. The resulting
stochastic integral equation is seen to be an extension of the well-known
single area unit hydrograph method, except that the model output is a
distribution of outcomes (or realizations) when applied to problems
involving prediction (rather than reconstitution) of storm runoff. The
distribution of outcomes can then be used to develop probability distributions
for runoff criterion variables, such as peak flow rate, detention basin volume
(among others), whereby confidence intervals may be developed.



The use of stochastic integral equations to model rainfall-runoff
response is shown to be a straightforward application of stochastics to model
uncertainty in runoff modeling, given uncertainty in the problem initial and
boundary conditions (i.e., rainfall). In this paper, the work of Hromadka and
Whitley (1989) is rederived in a constructive mathematical model
development that streamlines the accounting of rainfall variations over the
catchment, resulting in an easier to use set stochastic equations.

Stochastic Rainfall-Runoff Model Development

Similar to the development in Hromadka and Whitley (1989), a
stochastic integral equation will be developed under the premise that the
uncertainty in the spatial and temporal distribution of rainfall, with respect to
a single known rainfall data source, Pgl(+), for storm event i, dominates the
rainfall-runoff uncertainty problem. In the following analysis, it is assumed
that a quasi-linear modeling structure can be used to represent the rainfall-
runoff process. (From the development, the approach applies, in general, to
free draining catchments without dominating effects of storage such as due to
dams or other similar effects).

The stochastic integral equation rainfall-runoff model is developed
with respect to a distributed parameter link-node model setting, including
nonhomogeneous loss functions, multi-linear subarea runoff response,
multi-linear channel flow routing, and the random processes involved with
the spatial and temporal variation of rainfail over the entire catchment. In
this way, the randomness of the problem's initial and boundary conditions
(i.e., the prior and current rainfall over the catchment) is combined with the
integration of the various mutually dependent random components of the
runoff process, resulting in a stochastic integral equation.

Let the catchment be divided into hydrologic subareas, Rj, such as
discussed in Hromadka et al (1987). Each R;j is homogeneous in that a single
loss function transform, Fj(+), operates on the subarea point rainfall
uniformly. The effective rainfall (or rainfall less losses) is given by eji(+), for
storm event i, where



eji(t) = I j Fj(Pi(x,y,0)) dxdy / Aj (D
R;

where Aj is the area of subarea, Rj. The point rainfall is written as a sum of
proportions of the available rain gauge data by

'
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where lixyk is a proportion factor at coordinates (x,y) for event i, and (-)ixyk is
a timing offset at (x,y) for event i. Combining (1) and (2),
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Let Fj satisfy the property that
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(An example of such a loss transform is Fj(*) = Cj(-), where Cj is a constant for
Rj).
)

Subarea Runoff Contribution for Event i

The runoff contribution for subarea j is given by
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where
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We can introduce nonlinearity with the ¢ ij(*) based upon the
magnitude of eji(-), such as ¢'j() = (¢;(-) | e]-i(-)). One method is to define a set
of subarea transfer functions according to the severity of storm; i.e., by storm
class (e.g., mild, moderate, severe, flooding, etc.).

From (7) and (8), randomness is inherent in the lixyk and Bixyk values,
for each storm event i. That is, for prediction of runoff, the lixyk and Gixyk
values are samples of random variables distributed as [lxyk] and [nyk],
respectively. In this paper, the notation [-] refers to both the random process
and its distribution.

Channel Flow Routing

In the link-node network model, we have accumulating runoff
contributions at nodes, with flow routing along each link.

Using a multilinear flow routing analog, without channel losses, (e.g.,
see Doyle et al (1983), Becker and Kundzewicz (1987)),

ny
Qj+1i(t) = gj1i(t) + Y o Qji(t+Pr) 9
k=1

where the link is known given nodes j, j+1; node j+1 is downstream of node
j» nr is the number of flow routing translates used in the analog; and the ay
and Bg are constants. The Convex, Muskingum, and many other flow
routing techniques are given by (9). The parameters oy, Bx are link
dependent (upon Qji(+)), by a'y = (o | Qji(*)) and =P = B | Qji(-)) and may
be defined, in prediction, according to the storm class system used for the 0'5(+)
realizations. The realization ¢ij(-) can be resolved into characteristic statistics,
such as the maximum, or upper percentile values of Qij(-), which can then be
used to select the storm class.



Thus we can correlate the ax and By storm class values to the
measured rainfall, Ppi(-), by o) = (o | Pgi(-)) and Bk = (Pic| Pgi(+)).

Link-Node Model

For subarea 1, contributing runoff at node 1,

t

Q1i(t) = qui(t) = f F1(Pg'(t-s)) w1i(s) ds (10)
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Routing Q1'(*) to node 2, using (9), and adding q2i(+):
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Routing Q2i() to node 3, and adding q3i(-):
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Similarly, runoff at node j is given by upstream contributions of runoff

nj ‘
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where nj refers to the number of subareas tributary to node j; the <k>jis an
index notation for runoff contributions to node j as summed over index / for
index k as demonstrated in (13).

But from (7) and (8),
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where y}'(-) is the yij(-) of Eq. (8) conditioned by use of a storm class system
based on the subarea elj(-).



Rewriting (15),
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It is recalled that in (15) through (18), the a'<k>j, B'<k>j, and yij'(:) are
given on a storm class basis according to the several upstream subarea eji(')
realizations. Accordingly, ¥;"'(-) is given on a storm class basis. Also, the
random spatial and temporal variation of point rainfall for storm event i,
given by Pi(x,y,t), is reflected by the point probability distributions of [Axyk]
and [nyk], respectively, according to (2).

It is noted from Egs. (2) and (4), that due to the variation in point
rainfall, Pi(x,y,t), the various subarea runoff contributions do not directly
correlate to the measured rainfall data, Pgi(t). Consequently, the various flow
routing parameters and subarea transfer functions all depend upon the
cumulative effects of the upstream Myyk and Bixyk values. Indeed, some
subareas may have zero runoff due to incidental rainfall, and the flow
routing and subarea transfer functions will be inaccurate without knowledge
that only incidental rainfall occurred at these locations given that the known
rainfall data Pgi(-) is measured as being severe.



Applications

1.

A simplification of Eq. (17) is to neglect the temporal and spatial
variation of point rainfall, Pi(x,y,t), in the choice of storm classes for
determination of the ®'<k>js, B'<k>js, and yj'(). This is reasonable due
to the variation of Pi(x,y,t) being obviously unknown. A suitable
choice for determining parameter storm classes is to simply use the
rainfall data itself, Pgi(-). Thus, if Pgi(-) is severe, all parameters are
based on a severe storm class, and if Pgi(-) is mild, all parameters are
based on mild storm class values. Using Pgi(-) for determining storm
class values, (17) and (18) are reduced to

t

Ili -
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where double primes indicate that storm class designations are based
only on the Pyi(+) data.

The model of (19) is still multi-linear, due to the use of the
storm classes, but differs from the model of (17), in that the effects of
sampling the various distributions of [Axyk] and [6xyk] are essentially
ignored.

A further simplification of (19) is to assume that the rainfall-runoff
model will be used only within a single storm class. Thus, the model
is linear over the entire storm class. Using a superscript "o" notation
for this case,

nj t . .
Qjio(t) = z F/(Pgl(t—s)) ‘I’jm(s) ds (21)
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where ii%(s) follows from (20).

Equation (21) is the case typically considered for flood control
purposes, where only severe storm data are used for analysis purposes.



Runoff Prediction on_a Storm Class Basis

In prediction, the distribution of Pi(x,y,t) is unknown with respect to a
future measured data Pg*(-). In examining (8), (18) and (21), the
possible outcome for runoff, at node j, given the simplifications
leading to (21), is a distribution of realizations given by [Q;"(-)] where

ny t
[Q™Wi= 3 | F(Pg(t-s)) [P, (s)] ds (22)
&1 =0

where [y;°(s)] is the stochastic process of realizations from storm class o,
where for node j,
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where from (8)
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(Again [-] refers to both the random process and its distribution,
respectively. Using the notation [-] aids in identifying stochastic
variables in the mathematical development and subsequent
equations.)

The expectation is given for (22) by

t
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Equation (25) forms a basis of the unit hydrograph procedure
commonly used for flood control design and planning.



Distributions of Runoff Criterion Variables

Assume a free flowing catchment such that the modeling assumptions
leading to (17) applies. Further assume that each loss function transfer,
FA-), can be written as a linear combination of a single loss function,
F(-). Given catchment runoff at a stream gauge location, with runoff
Qgi(*) for storm i, and given associated rainfall, Pgi(:), (17) can to used to
relate runoff to rainfall by

t
Qgitt) = f F (Pgl(t-s)) ®i(s) ds (26)
s=0

where ®i(-) is a transfer function for storm event i, and it is required
that runoff at Qgi(-) does not occur in time prior to initiation of
rainfall, Pgi(+). From (17), ®i(-) includes all the proper samplings of the
various mutually dependent random processes and variables, for
storm i, used in the previous stochastic integral equation development
leading to (17).

Since the only available rainfall data are from the single rain gauge,
storm classes are defined on that rain gauge data. For this application,
only "severe" storms are being considered for flood protection
purposes. Define the storm class S by

S = {Pgi(-) | Pgi(-) is considered severe; j = i=1,2,...m] 27)

For each event Pgi(-)€ S, resolve the unique transfer function ®i(-) by

solving (26), resulting in m equally likely realizations of the transfer
function. Define the discrete distribution [®i(-)] by

[@i()] = {@i(-); i=1,2,...,m) (28)

where each ®i(:) in (28) is a solution of (26) for a Pgi(-)e S. Note that in
(28), the distribution [®(-)] is dependent upon the loss function, F,
chosen in (26); (that is [D(+)] = [®(-) | F]; however where understood, the
added condition notation will be omitted in the following.
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Each sample @i(+) from [@(-)] provides a proper sampling of all
the mutually dependent random variables and processes incorporated
in (17). Additionally, as with any stochastic process, the distribution
[D(-)], in (28), depends on the sample size, m, available from the
rainfall-runoff data.

It is noted that the assumption that each FA-) be a linear
combination of a reference F(-) may be accommodated by directly
relating effective rainfall, as a point function, in (2), by an analogous

ne
k=1 s=0
In prediction, where a future storm Py’(-)€ S is contemplated at

the rain gauge, the estimated distribution of runoff realizations at the
stream gauge is given by the stochastic integral equation,

t

[Qg"®)] = f F(Pg (t-s)) [®(-)] ds (29)

s=0

where [Qg'(-)] is the distribution of outcomes, based on the available
rainfall-runoff data. For m discrete events in [D(-)], there will be m
discrete outcomes in [Qg'(-)]. Oftentimes a filter is used with [Qg"(-)]
such that for each Qg'(-) € [Qg"()],

[ Qg'(t), if positive
Qg (1) = jl (30)

0, otherwise
where Qg*'(-) refers to a filtered realization of Qg*(-).

For the criterion variable of peak flow rate, Qp, the distribution
[Qp] is determined by the operator 41 on [Qg"'(-)], where

[Qp] = 4 [Qg*'(')] (31)

11



where [Qp] is the probability distribution of peak flow rates, 4 is the

operation of firiding the peak flow rate from any realization distributed
as [Qg"(-)]. Confidence intervals can then be computed for [Qp] by the
usual methods.

As another criterion variable, let Az now be the operation of

finding the maximum ponded depth of floodwater in a
detention/retention basin. Then the distribution of basin peak flood
depth, [depth], is similarly given by

[depth] = A[Qg" ()] (32)
Note that since 4 is nonlinear, the expectations are related by

E[depth] = E(22[Q;"()]) (33a)
where

E(A(Qg"()]) # 22(E[Qg"(-)]) (33b)

The Unit Hydrograph Method (Single Area)

From (29), the well-known single area unit hydrograph (UH)

method may be developed by the expectation, for the case of prediction
of runoff for rainfall event Pg'(-),

t

EIQy"(B)] = [ F(Py'(t-s)) Eld(s)] ds (34)
S=0

where E[Qg"(")] is a single runoff hydrograph (usually filtered); and
E[®(-)] is the calibrated transfer function. In order for E[®(:)] to be a UH,
normalization is needed by letting

n= f E{dX-)] ds (35)

s=0

and the UH is simply %{E[(D(-)], where the loss function is modified by

multiplying by the constant, 1.
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6. Transferability of the Stochastic Integral Equation Method

The applications 4 and 5 develop a stochastic integral equation,
and a UH method, at a stream gauge location given available rain
gauge data.

Methods have been in use for decades for transferring UH
relationships to locations where stream gauge data are not available
[for example, see Hromadka et al, 1987], and need not be discussed here.
In order to transfer the stochastic relationships of variability in the
[D(-)], as developed in (29), the same UH transferability techniques may
be used. That is, by scaling the distribution of [®(-)] outcomes with
respect to E[®(-)], then as E[D(-)] is transferred in UH form, so is the
distribution [®(-)]. This approach has been implemented in the recent
hydrology manuals for the counties of Kern (1992) and the largest
county in the mainland United States, San Bernardino (1993). The
approach is currently being developed for the Hydrology Manual of the
County of San Joaquin (1993).

Conclusions

The stochastic integral equation rainfall-runoff model is developed
with respect to a distributed parameter link-node model setting, including
nonhomogeneous loss functions, multilinear subarea runoff response,
multi-linear channel flow routing, and the random processes involved with
spatial and temporal variation of rainfall over the entire catchment. In this
way, the randomness of the problem's initial and boundary conditions (i.e.,
the prior and current rainfall over the catchment) is properly accounted until
the integration of the various mutually dependent random components
result in the stochastic integral equation. The applications considered in this
paper derive the classic unit hydrograph method as the expectation of the
stochastic integral equation, and also discuss transferability methods to apply
the uncertainty distributions at locations where runoff gauge data are not
available. Use of the stochastic integral equation method should be of no
significant increase in effort over that employed in the usual unit hydrograph
method for free flowing catchments.
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