STOCHASTIC EVALUATION OF RAINFALL-RUNOFF
PREDICTION PERFORMANCE

By T. V. Hromadka II,' Member, ASCE

ABSTRACT: Given a set of realizations of error data (i.e., the difference between model runoff estimates and
stream gauge data) from rainfall-runoff hydrologic models, it is possible to generate a set of error transfer
function realizations that, when convoluted with a suitable kemnel function such as the hydrologic model output,
equate to the original error data. In tumn, these error transfer function realizations may be used to generate
synthetic error data that is convolved from a separate design storm modeled runoff and the generated error
transfer function realizations. The synthetic error data set is then added to the design storm modeled runoff to
produce a set of equally likely outcomes for the model prediction. The set of equally likely outcomes is statis-
tically analyzed to provide, for instance, a confidence interval for the possible outcomes of the design storm
model. A four-section algorithm is presented that performs each of these tasks.

INTRODUCTION

The classification of rainfall-runoff hydrological models is
well known in the literature. However, a uniform procedure to
evaluate rainfall-runoff model performance, in prediction
mode, has not been generally adopted. In the present paper,
an algorithm is presented that provides a means for evaluating
the relative performance between rainfall-runoff model struc-
tures as applied in prediction mode. Before beginning the
mathematical development, a preview is presented.

Let X be a random variable for which we wish to estimate
future outcomes. Various estimates of X are available, namely,
outputs from model types Y), ¥, and so forth. We wish to
compare the models ¥; as to prediction performance.

To begin, we choose one particular mode] ¥,, say model ¥,.
Next, for m historic events, we have m ordered pairs of data
{, ¥)ii=1,2, ..., m}, where x' is the outcome of X for
event i, and y) is the outcome {model prediction) of ¥ for event
i. The error for event i, for model 1, is €}, where &, = ¥ —
¥i. For m events, there are m error values (or realizations) for
model 1, given by the set {e,; i = 1, 2, ..., m}, or simply
noted as the distribution of errors [¢], for model ¥,. The error
realizations employed to characterize the distribution of mod-
eling error, for a particular model, will be used as a sampling
from a stochastic process.

Suppose we wish to predict the outcome of X, for a future
event, d, noted as X, Then, an estimate of X, is given, for
model type 1, by the distribution of values of Y,, for future
event d, noted as [¥]? where

[Y)i =y + [e] (1

where [Y]{ = set of m estimates for X,, from model 1, for
event d; y{ = predicted outcome for event d from model Y;;
and [e,] = set of historic error values, from model Y,, given
estimate y?,

A similar approach is used to produce a set of equally likely
outcomes for a rainfall-runoff model structure. Eq. (1) can be
extended to the evaluation of storm runoff criterion variables
{e.g., peak flow rate, peak three-hour runoff volume, sediment
transport mean flow velocity for flow rates above a threshold,
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and so forth). The algorithm, which is shown in Fig. 1, uses
results obtained by applying the theory of stochastic integral
equations (Tsokos and Padgett 1974). Each rainfall-runoff
model is used to simulate, in prediction mode, four separate
storm events. That is, each rainfall-runoff model is first cali-
brated to a set of storm data, and then the calibrated models
are applied to a set of four storms that were not part of the
original calibration set of storms (i.e., *‘validation’* test runs).
For the case study (Abbott 1978), a nearly full urbanized small
catchment in northern California was studied, where negligible
runoff storage effects existed, and where good quality rainfall
and runoff data are available.

To develop error realizations, for each particular model in
prediction mode, the graphical output of each model (resulting
from the validation test runs) is compared to observed stream
gauge data at discrete time intervals and the difference be«
tween the two realizations is recorded as modeling error, in
prediction mode, for that particular model, for the particular
storm event. Inherent in this approach is the assumption that
the obtained error realizations are representative of a simple
random sampling of the underlying stochastic process. Addi-
tionally, the error realizations are dependent upon the runoff
mode! used; hence, a comparison in the variance of modeling
estimates can be made between model types, similar to the
evaluation of statistical estimators according to their respective
variances. Furthermore, if sufficient data sets are available, one
can partition the data according to storm size, for example, in
order to investigate modeling trends with respect to storm
magnitude. The error realizations are then equated 1o a con-
volution of the model output with a new transfer function
called the error transfer function. By solving the inverse prob- -
lem, the error transfer function realization is evolved on a two-
hour time interval basis for each model structure studied.

Bootstrapping directly from the error series assumes that the
error intervals are independent of the class chosen, and not
necessarily unigue to any particular model prediction interval
within the chosen class. The prior approach for generating
transfer functions is one of four techniques mathematically
developed in Hromadka and Whitley (1989). The approach
assumes that there exists a relationship between the error series
and the subject model predictions, and that this relationship
can be represented by the stochastic integral equation (SIE),
where each realization is equally likely. This chosen SIE also
includes the assumptions that (1) the model emror at time ¢ is
related to events prior or equal to time 1 and is not influenced
by events following time r; and (2) the transfer function re-
alizations are all equally likely on a class basis, where the total
set of transfer functions may be partitioned into classes, such
as according to model prediction magnitude, rainfall magni-
tude, or other criteria. In the current work, it is assumed that
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FIG. 1. Algorithm for Statistically Evaluating Rainfall-Runofi Madal Prediction Performance

all of the available runoff data and model results are from the
same class, and that the associated errors of model estimates
are as likely to occur for one particular hydrograph as another.
If the data were partitioned, then subsets of the error realiza-
tions would be deemed of the same class, and a different sto-
chastic distribution would result (analogous to partitioning
height measurements according to classes of male or female).
This SIE technique attempts to explain how very similar in-
tervals of measured storm rainfall have corresponding modeled
runoff hydrograph intervals that are also very similar, yet the
corresponding measured runoff hydrograph intervals differ sig-
nificantly.

Two other techniques (suggested by this paper’s reviewers)
for generating a larger population of transfer functions, using
a bootstrapping method, are

1. Assume errors are related to model predictions. Approx-
imate this relationship using the SIE and synthesize
transfer function realizations, Assuming these transfer
function realizations are independent, bootstrap from
them. ‘

. Assume errors are unrclated to model predictions, and
bootstrap from the error series directly to develop a set
of realizations.

A major goal in rainfall-runoff model studies is to predict
the runoff hydrograph corresponding to some critical hypo-

thetical storm event. This critical hypothetjcal storm event,
called the design storm, can be evaluated by convoluting the
resulting design storm model output (for a chosen model type)
with the set of error transfer functions that correspond to the
chosen model. This generates a new set of etror realizations
that are subtracted with the design storm model output to cre-
ate a set of equally likely outcomes, which may then be sta-
tistically evaluated, analogous to the discrete case of (1).

This approach will be demonsirated in an example appli-
cation to a series of actual data sets (Abbott 1978; Hromadka
et al. 1987) to determine the error realizations in each of six
hydrologic models, for a set of measured rainfall-runoff storm
events in an urban catchment. The six models evaluated were
(1) Continuous Flood Hydrographs (HEC-1); (2) Storm Water
Management Model (SWMM); (3) Massachusetts Institute of
Technology Catchment Model (MITCAT); (4) Storage Treat-
ment Overflow Runoff Mode] (STORM); (5) Hydrecomp Sim-
vlation Program (HSP); and (6) Streamflow Synthesis and
Reservoir Regulation (SSARR). [Descriptions of each of these
models are contained in the rainfall-runoff model study pre-
pared by Abbont (1978)].

The algorithm used to obtain the set of equally likely design
storm model outcomes is comprised of four sections. The Er-
ror Realization Section describes how the error realizations are
obtained from the model output (i.e., in prediction mode), and
the observed stream gauge information. The Error Transfer
Function Realizations section describes how numerical ap-
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proximation to the Volterra integral is used to derive the error.

transfer function realizations. The Design Storm Prediction
Model Evaluation section describes how a design storm model
is analyzed using the set of error transfer function realizations
obtained in the Error Transfer Function Realizations section.
The result is in the section that covers the statistical analysis,
giving a set of equally likely runoff hydrograph outcomes, on
an assumed storm class basis.

MATHEMATICAL MODEL DEVELOPMENT
Error Realization

To develop a simple random sample of error realizations,
measured runoff data are subtracted from model produced run-
off hydrographs (from validation tests). In the present paper,
due to the small sample size of only four validation tests, an
assumption of independence of model error on a two-hour time
interval basis is introduced in order to build a synthetically
larger sample size. The choice of the two-hour window is
based on the assumption that the final one-hour time interval
of runoff only depends on effects during the final and prior
one-hour time interval, and is due to a 7, of about one hour.

Fig. 1 shows how the observed stream gauge data (1.1} and
the model output (1.2), for a given storm event, are subtracted
to form the error realization (1.3) for the particular model un-
der investigation. The error realization is denoted by &(+),
where i = 1, 2, 3, ..., n is a particular two-hour interval; k =
1, 2, 3, ..., 6 is the model under investigation, and (-) is
time. As shown in step 1.3, the error realization is obtained
by subtracting the observed stream gauge data (,(-) at a par-
ticular time for the cumulative storm from the corresponding
model output M,(+) at that time, resulting in M,(+) — Q:(+).
Observed low flows measured by the gauge were not included
in order to preserve the assumption of mutually independent
realizations on a class basis, and so model base flow estimates
are not included in the analysis.

For use in this algorithm, the four validation storm events
for each of the six models are combined in time sequence to
form one large combined storm event realization, M,( ), where
k is the model type. The extended time frame is then divided
into two-hour segments. Each two-hour segment is separated
into 24 five-minutes intervals. The motivation for using two-
hour segments is to synthetically develop a larger population
of modeling error realizations; then a bootstrapping procedure
is used to simulate random sampling. The choice of two-hour
segments is based upon the hydrologic response time (i.e.,
time of concentration, T} of the study catchment being ap-
proximately one hour, and hence the last one-hour runoff hy-
drograph interval within the two-hour segment may be mu-
tually independent for this analysis. '

Error Transfer Function Realizations

The second section of the algorithm depicts how an error
transfer function realization Y -) is synthesized by using the
inverse of the convolution procedure (Hromadka and Whitley
1989). This concept is similar to evolving a unit hydrograph
given rainfall excess (rainfall less losses) and a runoff hydro-
graph, such as zan be accomplished using HEC-1. The con-
volution procedure is based on the stochastic integral eguation

&= f M@ — syids) ds 2)
e}

where 5 and r span the two-hour time intervals; and M{(:) =
two-hour duration segment of hydrologic model output under
investigation. Although (2) defines the transfer function as de-
termined from modeling estimates, an underlying assumption
is that the resulting synthesized transfer functions are equally
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likely realizations from a stochastic process. It is noted that
the synthesized transfer function is uniquely determined and
has both positive and negative values (Hromadka and Whitley
1989), as long as M(7) and £(7) begin to have nonzero values
simuitaneously. For example, Tsokos and Padgett (1974} de-
velop in detail the use of stochastic integral equations to medel
the uncertainties inherent in biological processes as a Volterra
integral representation of data obtained by instrumentation and
other measurements. In our case, the uncertainty in runoff es-
timates is modeled as a Volterra integral representation of rain-
fall-runoff modeling estimates. The Volterra integral may be
approximated by use of the discrete convolution method, The
convolution method for the algorithm is

Y= MiC) ® i) (3)

where (0 = notation for convolution process of (2). In (3), the
error realization £(-) is known from the supplied data, and
the hydrologic model output Mi() is known. As before, i =
1,2, 3, ..., n. The underpinning of (3) is to represent a par-
ticular rainfall-runoff model's history of performance (e.,
modeling error) as a stochastic process. To describe the sto-
chastic process, a discrete set of realizations are used as a
simple random sample, which is then bootstrapped 1o evolve
a synthetic population. Obviously, should a significant data
supply exist, those data should be used instead of synthetic
data. However, it is recalled that only the errors resulting from
validation tests should be used in (1)-(3).

To solve for the error transfer function (), it will be nec-
essary to rewrite {3). For notational purposes, we will use the
figure © to denote the inverse of the convolution procedure,
so that

) = M) © () @

where £(+) = modeling error realization developed in (3). By
numerically integrating (4) with respect to a two-hour duration
and five-minute unit intervals, (4) may be solved using linear
algebra by restating Mj(-) as a square (24 X 24) matrix and
g(+) as a (24 X 1) column vector. The situation where there
is no solution to the inverse problems occurring when the first
model value input is zero is handled within the computer pro-
gramn that was created. The resultant error transfer function
realization Pi(-) will be in the form of a (24 X 1) column
vector where i = 1, 2, 3, ..., n. For i = 1, the first two-hour
duration segment of the combined M}(-) is analyzed, resulting
in the error transfer function realization ¥i(-). For i = 2, the
time interval is shifted to encompass the interval starting at ¢
= 5 and ending at ¢ = two hours plus five minutes. Again, the
extracted error £(-) is used to determine the error transfer
function realization ¥j(-). For { = 3, the time base is again
shifted to span the time interval starting at ¢z = 10 minutes and
ending at ¢ = two hours plus 10 minutes. The process of in-
crementing the time base by five minutes and extracting the
error transfer function realization for the included two-hour
segment is repeated for the length of the combined storm du-
ration, M,,(-). The result will be set {4} of synthetic, equally
likely, error transfer function realizations.

To expand the discrete set of transfer functions into a larger
sampling domain, bootstrapping (Efron and Tribshirani 1993)
is used. The bootstrap method consists of randomly selecting
a transfer function from the set of transfer functions, with re-
placement. Selection with replacement means that each time 2
transfer function is selected, the selection is made from the
entire set, regardless of how many times each function has
been selected previously; i.e., each function has the same prob-
ability of being selected. Naturaliy, bootstrapping sampling is
a weak substitute for actual data. However, in the present pa-
per bootstrapping provides a synthetic population for use in
illustrating the statistical analysis.



Design Storm Prediction Model Evaluation

To develop a distribution of runoff hydrograph possibilities,
piven the history of a particular rainfall-runoff model’s per-
ance, for a hypothetical design storm event, the stochastic
imwegral equation is applied to the model output. This section
of the algorithm incorporates the set of error transfer function
realizations developed in the previous section. These transfer
function realizations will be used to evaluate a rainfall-runoff
model prediction, called the design storm model M} (see step
3.1).
By rearranging the formulation shown in step 1.3

[QC)F = M) — [ECOR 6]

As in step 3.2, [Q]¢ = distribution of runoff hydrographs, for
mode! type k, for design storm event d; [£(-))¢ = distribution
of error realizations, for model type k, in prediction mode; and
M(-) = model type k runoff hydrograph, for design storm
event, d. For evaluation purposes, the error distribution for the
design storm mode] will be estimated by the stochastic pro-
cess, in discrete form

[ECON = M) ® W) (6)

where {¢i(+)} = set of error transfer function realizations ob-
tained in the previous section. Eq. (6) generates an ensemble
of error realizations [£( - )]7, which are based on the error trans-
fer function realizations developed for model type k discussed
in the two previous sections, and here are convoluted with the
design storm model output, M¥(-). For the design storm
model, this step constitutes the transition from a single storm
observation to a discrete statistical sample space capable of
statistical analysis, described in the following section.

Y. (5) may then be rewritten in terms of a stochastic pro-

, 88
[QC)ON = M) —~ [ M) ® {9 )}] e)]
fori =1, 2,3,...,n, where [Q(-)]{ = stochastic process of

equally likely outcomes for design storm model 4, and, where
as before, k=1,2,3,..., 6.

Statistical Analysis of Stochastic Process [Q(- )]}

The output of the algorithm, {Q(-)]{, consists of a discrete
distribution of equally likely outcomes for the particular de-
sign storm prediction under consideration. These stochastic re-
sults can be analyzed using traditional statistical methods,
Since we assume each outcome is equally likely, statistical
methods may be used to obtain useful information from the
results of the algorithm, such as

1. The maximum value of the model output (i.e., peak flow
rate)
. The expected value of the peak flow rate
. The median value of the peak flow rate estimates
. The variance of the peak flow rate estimates (the variance
is particularly interesting, since it calls attention to the
distribution, or spread, of the outcomes of each model
under consideration
5. Confidence intervals, which would establish an interval
that inciudes the true value of the peak flow rate with a
predetermined degree of certainty
Total runoff volume

L2 B2

Other statistics may be similarly analyzed, such as runoff
volume and depth-duration characteristics, among others. The
algorithm may be used to generate statistical data for each of
the k models under consideration. Since the data are based on
the error realizations obiained in the Emror Realization section,

the output of the aigorithm will reflect the actual discrepancy
between the observed stream gauge data and the model under
study, when applied in prediction mode. (Of course, an addi-
tional increase in variance will occur in transposing the model
sets to watersheds that are not part of the rainfall-runoff data
sel.)

By using the algorithm, it is possible to rank the six models
under evaluation with respect to a statistical measure, such as
the mean, for each [Q( )]}

APPLICATION

As described in the previous development, the actual rain-
fall-runoff model output is used in the stochastic integral equa-
tion in developing the stochastic process of runoff hydrographs
in prediction mede. It is recalled that error transfer function is
defined by a set of equally likely realizations synthesized by
equating a particular rainfali-runoff model output, in prediction
mode (i.e., in this case, from validation tests), to the modeling
error. That is, once the rainfall-runoff model is calibrated, the
model is tested using known rainfall-runoff data that were not
part of the calibration data set, resulting in realizations of mod-
eling error for the given model in prediction mode. This ap-
proach describes the modeling efror trends more appropriate
to those applied in practice, rather than modeling error in
matching its own calibration data.

To compare the six previously cited rainfall-runoff models
in relative performance, three hypothetical design storm runoff
hydrographs are defined, labeled as A, B, and C. Storms A,
B, and C correspond to about the 100-, 5-, and 25-year design
storm events, respectively. For output A, as an example, it is
assumed that all six rainfall-runoff models have produced an
output realization {runoff hydrograph) that is then used in each
of the respective stochastic integral representations to develop
the distribution of runoff predictions.

As described before, six rainfall-ronoff hydrological models,
in prediction mode, were each compared to observed stream
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FIG. 2(a). Stochastic Process of Error Transter Functions—
Rainfall-Runoff Modet

Transfer Functions

Time {Minutes)

FIG. 2(b). Stochastic Process of Error Transter Functions —
Rainfall-Runoff Model 2
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FIG. 2(f). Stochastic Process of Error Transfer Functions—
Rainfall-Runoff Model 6

gauge data (from the model validation data set) at discrete time
intervals, and a set of error realizations were obtained for each
of the six models. A set of error transfer function realizations
{Wi} were obtained for each of the six models, k=1, 2, ...,
6. The results may be seen in Figs. 2(a)-2(f), where the error
transfer function realizations {{} are plotted for the chosen
two-hour time durations.
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Each of the six hydrological models was used in conjunc-
tion with the three design storms to generate a set of probable
design storm runoff hydrographs, as shown in Figs. 3{(a)-3(f),
4(a)—4(f), and 5(a)-5(f). In each of the six figures (for each
case of A, B, and C), the discrete statistical sample space is
indicated by the dark plots, and the actual design storm pre-
diction (i.e., A, B, or C) is shown by the white line within the
shaded area.

Tables 1-3 give the actual values for the peak flow rate and
then give the mean and standard deviation for the peak flow
rate of each of the six rainfall-runoff hydrological models as
applied to each of the three design storm runoff hydrographs.
Further, the tables provide the actual total runoff volume, for
the set of stochastic realizations of the runoff hydrograph, pro-
duced from (7}, and then provide the mean and standard de-
viation for the total runoff volume for each of the six rainfall-
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FIG. 3(a). Stochastic Process of Runolf Hydrographs for De-
sign Storm Runoff Hydrograph A—Rainfall-Runeif Model 1

FIG. 3{b). Stochastic Process of Runoif Hydrographs for De-
sign Storm Runoff Hydrograph A—Rainfall-Runoff Model 2
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FIG. 3(c). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph A— Ralnfall-Runoff Model 3



FIG. 3(d). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph A— Rainfall-Runoff Model 4
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FIG. 3(e). Stochastic Process of Runoff Hydrographs for De-
si~n Storm Runoff Hydrograph A—Rainfall-Runoff Model 5
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FIG. 3(f). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph A —Rainfall-Runoff Model 6

runoff hydrological models as applied to each of the three
design storm runoff hydrographs.

In examining Figs. 3-5, it is seen that for all six rainfall-
runoff models, there is a considerable dispersion in prediction
results. Generally, the vast majority of probable prediction hy-
drographs have a shape that emulates the original rainfall-run-
off model output. However, from the figures, there are occur-
rences of significantly delayed peak flows that reflect similar
occurrences observed from the historic performance data of
trage models in the tests performed by Abbott (1978). That is,

realizations shown in the figures reflect the history of rain-
raul-runoff model performance as noted in validation tests.

In the present case, the stochastic process shown in Figs.
2-5 reflects the use of bootstrapping in order to populate the
low-population discrete distribution of the original data. If val-
idation results were to be preserved by the engineering com-

FIG. 4(a). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph B (Shown in White)— Rainfali-
Runoff Model 1

Time (Minutes)

FIG. 4(b). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph B (Shown In White)— Rainfall-
Runoff Mode] 2

Time {(Minates)

FIG. 4{c). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph B (Shown In White)— Rainfall-
Runoff Model 3

munity in a common database, for all rainfall-runoff models,
then bootstrapping may not be needed, as sufficient perfor-
mance data may exist.

It is noted that the results reflect the variance in modeling
estimates as developed from validation results. In practice, one
generally does not have a calibrated rainfall-runoff model on
a site-by-site basis, but may have a regionally calibrated
model. This occurrence will result in less certainty in modeling
results, and there will be a corresponding increase in the var-
iance in prediction results addressed herein. To study this latter
effect, the approach described earlier can be readily extended
to develop error realizations from site uncalibrated rainfall-
runoff models versus stream gauge data, and the corresponding
stochastic integral equation formulation is developed analo-
gously.

JOURNAL OF HYDROLOGIC ENGINEERING / OCTOBER 1997 / 193



SR NS A
i
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FIG. 4(¢). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph B (Shown in White)-—Rainfall-
Runoff Model 5

FIG. 4{f). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runotf Hydrograph B (Shown In White)— Rainfall-
Runoff Model 6

The objective evaluation based on error realizations may be
used as a comparative tool to rank a set of hydrologic models
under consideration. For example, reference to Tables 1-3
shows that, for the three design storm runoff hydrograph test
cases, ranking the six hydrologic models with respect to how
accurately their expected value estimates predict the peak flow
rate [for the considered test cases of Abbott (1978)] may be
possible. However, due to the limited data available to this
analysis, the six models tested are assigned a random number
for the rankings given in the tables.

FUTURE RESEARCH NEEDS

Several topics remain for future research, including (but by
no means limited to) the sensitivity of model error variance
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Time (Minutes)

FIG. 5(a). Stochastic Process of Runoff Hydrographs for De-
slgn Storm Runoff Hydrograph C (Shown in White)—Rainfall-
Runoif Model 1

FIG. 5(b). Stochastic Process of Runoft Hydrographs for De-
sign Storm Runoff Hydrograph C {Shown In White}— Rainfall-
Runoff Model 2
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FIG. 5(c). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph C (Shown in White)— Rainfall-
Runoff Model 3 .

estitnates due to selection of storm class for partitioning pur-
poses; extension of the SIE method to cases involving signif-
icant runoff storage effects (which may negate the fundamental
assumption of error interval mutual independence on a class
basis); alternative etror analysis, such as using the storm rain-
fall rather than the model output [e.g., Hromadka and Whitley
(1989)] or assuming independence of intervals of the error
transfer function realizations; among many other topics. Other
areas of research include evaluating other techniques for han-
dling small sample sizes; comparison of statistical results using
a single long-duration validation event versus several short-
duration events; determining when the sample size is sufficient
for statistical analysis; evaluating methods to determine storm
classes (i.e., split-sampling decision techniques); sensitivity of
SIE variance estimates to choice of sampling techniques and
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FIG. 5(d). Stochastic Process of Runoff Hydrographs for De-
sign Storm Runoff Hydrograph C (Shown In White)— Rainfall-
Runoff Modal 4
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to choice of sample size and classification; and analysis of the
mutually independent assumption used in the bootstrapping
technique employed in the present paper.

The ability to include model performance with storm runoff
estimates is a feasible alternative to using a single point esti-
mate or a single runoff hydrograph estimate for design studies.

h capabilities may aid in deciding which mode! structure

-y be “‘best’” for a particular application, and for risk anal-
ysis of a system. By creating a central database of hydrologic
model validation studies, including the data needed for the SIE
analysis, access to and input to the database are possible via
the Internet. Eventually, a significant database may be built
that can replace the need to synthetically populate a distribu-

TABLE 1. Statistical Summary of Peak Flow Rate Vaiues, for

Design Storm Runoff Hydrograph A

] Standard
Actual valve | Model number Mean deviation
{1) {2} {3} 4}
(a) Peak Q; m*/s (cfs)

. 21 (748) 1 20 (719) 8 (293)
21 (748) 2 24 (854) 6 (337)
21 (748) 3 19 (686} 9 (312)
21 (748) 4 19 (679) 13 (454)
21 (748) 5 21 (726) 9 (313)
21 (748) 6 22 (787) 10 (354)

(b)) Volume; 1,000 m* (AF)
207 (168) 1 197 (160) 89 (72)
207 (168) 2 234 (190) 90 (73)
207 (168) 3 190 (154) 91 (74)
207 (168) 4 187 (152) 113 (92)
207 (168) 5 203 (i65) 94 {76}
207 (168) 6 221 (179 96 (78)

TABLE 2. Statistical Summary of Peak Flow Rate Values, for

Design Storm Runoff Hydrograph B

Standard
Actual value | Mode! number Mean deviation
(1) 2) (3) {4)
(@) Peak Q; m®s (cfs)

8 (292) 1 8 (284) 3109

8 (292) 2 12 (334 4 (136)

8 (292 3 7 (264) 3 (119

8 (292) 4 7 (262) 6 (209)

8 (292) 5 8 (274) 3(115)

8 (292) 6 9 (305) 4 (158)

(&) Volume; 1,000 * (AF)

46 (37) 1 46 (37) 20 (16)
46 (37) 2 53 (43) 21 (17
46 (37T 3 44 (36) 20 (16)
46 (37) 4 43 (35) 27 (22)
46 (37 5 47 (38) 20 (16)
46 (3D 6 52 (42) 22 (18)

TABLE 3. Statistical Summary of Peak Flow Rate Values, for

Design Storm Runoff Hydrograph C

Standard
Actual vaive | Modst number Mean deviation
(M 2 {3) {4)
(a) Peak 0Q; m%s (cfs)

18 (648) 1 18 (640) 7 (247)

18 (648) 2 21 (757) 9(318)

18 (648) 3 17 (613) 8 (280)

18 (648) 4 17 (604) 14 (484)

18 (648) 5 7 (614) 8 (267)

18 (648) 6 20 (714) 11 (381)

(&) Volume; 1,000 m® (AF)

117 (95) 1 121 (98) 49 (40)
117 (95) 2 139 (113) .52 (42)
117 (95) 3 116 (94) 52 {42)
117 (95) 4 112 {91) 68 (55)
117 (95) 5 122 (99) 52 (42)
117 {95) 6 133 (108) 57 (46)

tion of error intervals (and eliminate the bias created by boot-
strapping or sampling from a limited sample).
CONCLUSIONS

The subsections of the section on mathematical model de-
velopment show how a stochastic process has been developed
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that objectively evaluates rainfall-runoff hydrologic model per-
formance in prediction mode. The process relies solely on data
that the hydrologic models themselves produce in validation
tests where calibrated rainfall-runoff models are tested against
rainfall-runoff data sets not included in the calibration data
sets. The runoff hydrographs from the rainfall-runoff hydro-
logic model, in prediction mode, are compared to the corre-
sponding stream gauge data obtained duting the same storm
event. The deviation between the two realizations is recorded
as an error realization (first subsection).

A convolution procedure (based on the Volterra integral) is
used to obtain a set of error transfer function realizations using
the storm model! output and the error realizations (second sub-
section). The algorithm may now be used to statistically eval-
uate a design storm model runoff hydrograph prediction.

The algorithm is used to generate a synthetic set of error
transfer function realizations, but here the error realization is
obtained by the convolution of the design storm model output
and the previously generated error transfer functions. This pro-
duces an ensemble of design storm error realizations (third
subsection). The error realizations are then subtracted from the
design storm model result to obtain a set of equally likely
outcomes for the design storm model. This statistical infor-
mation is based solely on the error realizations obtained from
the models themselves, in prediction mode.

The work of Tsokos and Padgett (1974) demonstrates the
predictive ability available by use of 2 stochastic integral equa-
tion such as (2). However, further research is needed to dem-

196 / JOURNAL OF HYDROLOGIC ENGINEERING / QCTOBER 1997

onstrate the predictive ability of (2) in rainfall-runoff model-
ing, among many other topics. Perhaps model users could
make available their validation/calibration data sets of stream
gauge data and model results via the Internet. In time, a con-
siderable data set “‘history’’ of model performance would be
assembled and subsequently could be analyzed using a sto-
chastic integral equation formulation such as presented herein.
Further research is also needed regarding issues of *‘filtering’’
the error distribution to avoid so-called *‘negative runoff.”
Obviously, the presented results could have been filtered so as
to present a more tractable appearance; however, by using a
nonfiltered set of results, a more accurate representation of the
modeling results is presented.
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