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Abstract: A basic problem in hydrology is computing confidence levels for the value of the T-year
flood when it is obtained from a Log Pearson I1I distribution in terms of estimated mean, estimated
standard deviation, and estimated skew. In an important paper Chowdhuty and Stedinger [1991]
suggest a possible {ormula for approximate confidence levels, involving two functions previously used
by Stedinger [1983] and a third function, A, for which asymptotic estimates are given. This fonnula
is tested [Chowdhury and Stedinger, 1991] by means of simulations, but these simulations assume
a distribution for the sample skew which is not, for a single site, the distribution which the sample
skew is forced to have by the basic hypothesis which underlies all of the analysis, namely that the
maximum discharges have a Log Pearson 11 distribution. Here we test these approximate formulas
‘or the case of data from a single site by means of simulations in which the sample skew has the
distribution which arises when sampling from a Log Pearson 111 distribution. The formulas are
found Lo be accurate for zero skew but increasingly inaceurate for larger common values of skew.
Work in progress indicates that a better choice of A can improve the accuracy of the formula.

1 Introduction

A basic problem in hydrology is the estimation, for design purposes, of the 100 year
flood, or more generally the T-year flood. A major source of uncertainty in this
estimation is the choice of underlying distribution for maximum discharge [Bobee,
et. al, 1993, Cohon, et. al., 1988, and World Meteorological Organization, 1989].
Once this distribution is chosen, an important further source of uncertainty is that
caused by the estimation of the parameters of the distribution. To give a more
complete picture of the level of risk involved in a chosen level of flood protection
it is necessary to quantify this uncertainty by means of confidence intervals for the
T-year flood estimates. Water Resource Council Bulletin 17B {Advisory Council
on Water Data, 1982] recommends the use of a log Pearson III distribution, fit to
yearly maximum discharge data, for the prediction of T-year events. Other methods
have been proposed, see for example the discussion in {Bobee, et. al., 1993, Cohon,
et. al., 1988, and World Meteorological Organization, 1989], and an important area
of research is in obtaining more accurate methods for estimating extreme floods.



52

However, in practice, because of the authority of the U.S. Water Resource Council,
the procedure given in Bulletin 17B is used extensively.

The log Pearson III distribution, which will be discussed in more detail later, con-
tains three parameters which are estimated by the procedure of Bulletins 17A and
17B in terms of the estimated mean, estimated standard deviation, and estimated
skew of the distribution of logarithms of the yearly maximal discharge data. The
estimators used are, except for the scaling factor appearing in front of the bracket in
the formula (3) for -, the usual ones.

Accurate confidence intervals can be given when the mean and standard deviation
are estimated but the skew is known to be zero. In this case the log Pearson Il
distribution is actually a legnormal distribution, and confidence intervals can be ob-
tained from the non-central t-distribution [Advisory Committee on Water Data, 1982,
Resnikof and Lieberman, 1957, Stedinger, 1980].

The case of non-zero skew is more complicated than the case of zero skew [Bobee
and Robitaille, 1977, Hu, 1987, Kite, 1975, Phien and Hsu, 1985]. Stedinger [1983]
showed that the method of computing confidence intervals suggested in [Advisory
Committee on Water Data, 1982] is not satisfactory; also see the general discussion
in [Chowdhury and Stedinger, 1991].

If the skew is known (but not zero), and the mean and standard deviation are
estimated, we showed [Whitley and Hromadka, 1986a] how to obtain confidence levels
for the T-year flood by means of simulations. Stedinger [1983] gave an approximate
expression for confidence intervals for the quantiles of the log Pearson 111 distribution
using an asymptotic variance formula {Bobee, 1973, Kite, 1976}. The accuracy of this
approximate formula for skew values v in the range -0.75< + <0.75 was discussed in
[Whitley and Hromadka, 1986b, 1987].

A major attack on the complete problem of computing confidence intervals for the
T-year flood when the mean, standard deviation and the skew are not known but are
estimated was made by Chowdhury and Stedinger in [1991], the basic idea of which
is to modify Stedinger’s approximate formula for the case of known skew by replacing
the variance ratio in that formula by first order asymptotic expansions which take
into account some of the variation in the estimation of the skew. The purpose of this
paper is to discuss the accuracy of these Chowdhury-Stedinger formulas for the basic
case of data from a single site.

2 Basic equations

When yearly maximum discharge is fit by a log Pearson IIl distribution, for the
prediction of T-year events, the logarithm of the yearly peak discharge is assumed to
have a density function of the form:

f(x) = (1/|alT(b))f(x — c)/a]* exp[—(x — c)/a] (1)

where, in the case of positive a, the density is given by the expression (1) for x>c
and is zero for x<c, while in the case of negative a the density is given by (1) for x<c
and is zero for x>c. Computing the mean g, standard deviation o, and skew v from
equation (1} shows that

2 = a%
? = 4/b
# = ctab (2)

Q
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where a has the same sign as .

In the case of zero skew, which is the limiting case where the positive parameter
b tends to infinity, the density in equation (1) tends to the density for the normal
distribution,

It is further recommended in Bulletin 17B that the parameters a,b, and ¢ be esti-
mated by using equations (2) and the usual moment estimators for y, o, and -y, with
the moment estimator for v scaled to make it less biased [Bobee and Robitaille, 1975,
Lettenmaier and Burges, 1980]. Specificaily

m

jio= Zx;/m

=1

m 1/2
{m/m — 1}/ [Zx?/m - ,&2}

=8
Ik

i = {(m{m—1))"*/(m - 2)} [Z X fm - 3h6 - /13} ot (3)
i=1

Two observations follow directly from these formulas. The first is that if the max-

imum yearly discharge is Q, and X=log(Q), then {X-c)/a has a gamma distribution
with parameter b, i.e. with density

g{x) = (1/T(b))x""1e™ (4)

for x greater then zero, and g(x) = 0 for x less than zero. This shows that the param-
olers a and c can be scaled out of the problem, but the parameter b, or equivalently
the skew, enters into the problem in a complex way as the parameter of a gamma dis-
tribution, the estimation of which contains many difficulties [Bowrnan and Shenton,
1988].

The second observation concerns the case of negative skew. To introduce notation
which will be needed later, given a value T>1 of the T-year flood, e.g. 'T=100, set
p=1-1/T. The T-year flood value for X=logQ is the number t, having the property
that

Prix<t,) = p (5)

i.e. the value of the log of the maximum discharge will not, with probability p,
exceed the value t,. In the case of positive skew, Pr((X —¢)/a £ (tp — ¢)/a) = p and
therefore (i, — ¢)/a is the p-th percentile for the gamma distribution (4). If the skew
is negative,

Pr(x <tp) = Prl(X —c)/a > (t, — c)/a] (6)

the reversal of the inequality occurring because a is negative.

Let a’, b, and ¢’ be the parameters for -X=X’, which also has a Pearson III distribu-
tion. Equations (2) show that a’=-a, b’==b, and ¢'=-c. Therefore {6) can be rewritten
as Pr[(X' — ¢")/a' 2 (—tp, — &)/a/] = Pr{X' 2 ~tp) = 1 — Pr(X' < —t;), and then

PriX' < —t,} = 1—p (7

or. changing p to 1-p,
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Pr(X' < ~tiy) = P @)
Letting t;, be the p-th percentile for X'=-X,
t;; = —tip. (9)

The relation (9) is useful in numerical calculations: problems involving negative skew
can be solved as a related problem for positive skew.

3 Chowdhury and Stedinger’s approximate formula

The approximate formula given in [Chowdhury and Stedinger, 1991] for a confidence
interval for data taken at a single site can be written as

c(m,q, T,/ 6,%) = i+6&[K3T)+ A% T)B(m,q,T)] . (10)

The parameters are m, the number of observations of maximum discharge at the
site, the estimates of equations {3) based on these observations, and three functions:
K(%,T) which depends, as indicated, on the values of ¥ and the value T of the T-
year flood; B(m,q,T}, which depends on m,T, and the confidence level q as described
below; and A(%, T), the variance scale factor. Letting X=logQ, the purpose of this
formula is to provide a g-th percentile confidence value for the random variable X
with true T-year flood value tp, i.e. in the sense of repeated sampling

Prit, < c(m,q,T,4,6,%)] = q. (1)

For example, with q=.85, repeated use of this formula at a series of sites, each of
which has the same log Pearson III distribution and which is sampled by m data
points, is supposed to give an “85% safe estimate” for the (logarithm of the) T-year
flood value, i.e. one which is at least as large as the true T-year flood value tg, 85%
of the time.

4 General simulation considerations

To understand how these formulas are tested by simulation it is necessary to discuss
some specific details. Results are presented for the T=100 year flood as being that
of most general interest. A range of skew values are chosen for testing: y=-1{1/2)1;
a range of values of numbers m of data points at the site are chosen: m=10(10)100;
and a number of confidence levels q = 5(5)95 are chosen. These parameter choices
cover a wide range of practical values,

The simulation proceeds by choosing one of the skews -y from the set (-1.0, -0.5, 0.0,
0.5, 1.0). It is easy to see that the mean and standard deviation can be scaled cut of
the formulas so that it is completely general to suppose also that p=0 and o=1; of
course that does not mean that 2 = 0 or that & = 1. Then 100 points are drawn from
a Pearson 11 distribution with skew v, mean 0, and standard deviation 1, and these
points are used to compute ji, &, and 4 from (3) for the ten values m=10(10)100. For
each of the confidence levels q=5(5)95 the value of ¢(m,q,T,j, &, %) is computed from
equation (10) and it is compared to the true T=100 year flood value t,, p=.99, which
is known exactly because the values of g, &, and + are specified in the simulation. This
is done a repeated number of times (30,000) and each time it is noted whether the
values of ¢(m,q,T,f, &,%) are indeed greater than t,. The resulting relative frequency
counts of these occurrences show for that value of skew and T=100 what confidence
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level is actually given by the formula (which is supposed to give the q-th confidence
level). Looking at the set of tables for the range of skews tested will then indicate how
accurate the use of formula (10) would be for 2 site whose log maximum discharges
have the hypothesized Pearson III distribution and whose (unknown) skew lies in the
interval of skews tested by the simulations.

The important point to note in this general outline of the simulations is that there
are no hypotheses other than that logQ has a Pearson III distribution. In the simy-
lations done by Chowdhury and Stedinger [1991], generating models for -y are chosen,
the first is rejected as giving unreasonable results, while the second, which is used, is
described as “not intended to be the true model of the distribution of 4 in a region”
[Chowdhury and Stedinger, 1991, pg 820]. A major problem (among others) with
this approach is that in the case of sampling from a given site, the estimator 4 has a
specific distribution from the fact that it is sampled from a Pearson 11 distribution.
H another model of the distribution of sample skews is assumed, that distribution
may not be similar enough to the real distribution of skews from a Pearson 1II to
make sampling from that model relevant to the Pearson III problem.

in Chowdbury and Stedinger [1991] three situations are considered: {A) Skew given
by sampling from a site, which we discuss here; (B) Skew given by a regional skew G;
and (C) Skew given by a combination of site skew and G. The formulas of (B) and
(C) are then derived in [Chowdhury and Stedinger, 1991] using assumptions about
the regional skew G and the distribution of the values of skew -« about the value
of G {Advisory Council on Water Data, 1982, Tasker, 1978, Tasker and Stedinger,
1986]. These assumptions, additional to the basic assumption that logQ has a yearly
maximum which has a Pearson HI distribution, are also used in generating the ran-
dom variables used in the simulations of Chowdhury and Stedinger {1991), making
the results in the cases (B} and (C) critically dependent on the validity of these extra
assumptions. We do not discuss cases (B) and (C) here, partially because of ques-
tions concerning the use and distribution of regional skews, see e.g. {Hardison, 1974,
McCuen, 1979, Tasker, 1978, Tasker and Stedinger, 1986], but mainly because case

\) is basic to any compuiation of T-year floods.

5 Computing B, K, and A

The functions B and K of equations (10) are those used in [Stedinger 1983], whose
camputation was discussed in [Whitley and Hromadka,1986b]. The function K was
computed in [Whitley and Hromadka, 1986b] by use of the Wilson-Hilferty approxima-
tion [Wilson and Hilferty, 1931], whereas here it is done more accurately by inverting
the incomplete gamma function [Press et. al., 1989], except for small 4 < 0.2, equiv-
alently large b>100, for which the computation of the incomplete gamma function
becomes unmanageable and some approximation must be used, and in this case we
use the Wilson-Hilferty approximation. Concerning the use of the Wilson-Hilferty
transformation, note that it was derived as an approximation to the Chi-Square dis-
tribution which, being the sum of squares of normal distributions, is pesitive; when,
by means of a change of variable, it is applied to a Pearson 11 distribution it is only
valid for non-negative skew. While the formula is not accurate when small nega-
tive values of skew are directly substituted into the formula, as noted by Chowdhury
and Stedinger [1991], it is accurate to use equation (9) and then the Wilson-Hilferty
approximate formula for positive skew.
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The function B can be computed from the non-central t-distribution, as described
by Whitley and Hromadka {1986b].

The computation of A, in the forms given in equations (17}, (18), or (19°) of Chowd-
hury and Stedinger [1991] applying to cases (A}, (B), and (C) discussed above, can
be easily computed from a knowledge of K and 2—?-. Although it is possible to derive
an exact formula for %ﬁ from its definition In terms of a percentile of an incomplete
gamma function, that formula opens a Pandora’s Box of numerical analysis prob-
lems. It is much easier to use Richardson extrapolation [Burden and Faires, 1993,
pgs 168-173] and thereby accurately compute ‘Z—f— from the values of K.

The graphs given below of B,K, and A will allow the reader to calculate the confi-
dence intervals of equation (10} for T=100 and a representative range of values of m,
q, ¥ with enough accuracy to get a feel for the magnitude of the numbers so obtained.
The curves in Graph 1 for m=10,25,50, and 75 can be distinguished because the slope
of the curves decreases as m increases, i.e. extra data points lower the value of a given
confidence level.

Graph 1: B(m,q,T), T=100, m = 10,25,50,75
Graph 2: K(%,T), T=-100, -2< ¥ < 2
Graph 3: A(3,T), T=100, -2< 4 < 2

Another remark concerning negative skew: arguments similar to those used in de-
riving equation (9), show that if equation (10) gives the required confidence levels,
then no matter how tht functions K, A, and B are defined, we must have

K(’Y'l P) = MK(_‘}’sl - P), )\(’Ya p) = )‘("711 - PLB(m,P,q) = _B(m’l — Dy 1- q) -
(12)

To simplify the expressions (12), K,B, and X have been regarded as a functions of
the variable p=1-1/T. If they are regarded as functions of T, as has been done
above, the first equation would take the form K(v,T) = -K(-4,(1-1/T)"1), ete. These
theoretically derived relationships {12}, are exactly satisfied by the formulas given in
Chowdhury and Stedinger [1991], even though those formulas are obtained by means
of approximate asymptotic expansions.

6 Simulations

The results of the simulations are given below in Tables I-3. The values given are
the errors made in using the formulas (10} for the T=100 year flood, the value of
skew specified for each table, and the tabulated values of m and q. That is, if § is
the observed frequency that (11) holds in the simulation, with m sample points, then
the number tabulated in the {m,q) matrix of the table {or that skew value is

100(4 - q) - (13)

For each table, the values were obtained by simulating 30,000 sites. For each site 100
gamma distributed random variables were generated, using the techniques described
in [Devroye, 1986). The first 10 of these values were used to compute #, &, and ¥ to
be substituted into (10) for the case m=10, the first 20 values were used for the case
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m=20, etc, so that the values used for some value of m less than 100 is also used for
all higher values of m.

Tables of the values of B, K and A in intervals of 0.01 skew are used to compute the
values of K and A by tabular linear interpolation, not by computing K(4) and A(%)
for each simulated value of 5.

The skew values in the simulations were truncated to lie in the interval [-2,2] (They
are truncated in [Chowdhury and Stedinger, 1991} to lie in [-1.5,1.5]), reflecting the
fact that in practice a very large estimated skew would probably be truncated. The
exact nature of the truncation is not significant, there being very little difference
between results for skew truncated to [-2,2] and {-4,4], even for v = +£1. (This is
not because there are no estimated skew values outside of these intervals for most
m under consideration; Kirby's [1975] bounds for the absolute value of the unscaled
skew estimates are 4.12 for m=20, 6.86 {for m=30, and 9.8 for m=100.)

The confidence levels that are in common use are 50% and higher, which are de-
picted in Tables 1-5 by the last 10 rows i.e. g=50(5)95. With this in mind, Table 1
shows that the accuracy of (10 is acceptable for a skew of zero. For a skew of 1/2,
Table 2 shows 2 maximum error in the last 10 rows occurring for m=10 and g=50.
Using (10} in this case will provide a confidence level of 43.7%, not 50%. Similarly,
the entry for m=10, q=50 in Table 3, shows that in this case of skew = -1/2, the use
of (10) gives a confidence level of 59.9%, not 50%. The errors for skew +1 are shown
in Tables 4-3 and are considerably larger.
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Table 1. T = 100, skew = 0.0, 30,000 sites simulated columns: number of data points m = 10 (10)
100 rows: confidence levels q = 5 (5) 95.

Error in Confidence Levels, Skew = 0.0

m=10 m=20 m=30 m=40 m=50 m=60 m=70 m=80 m=% m=100
q=b -4.7 -4.3 -4.0 -3.6 -3.3 -3.0 -2.9 -2.7 24 -24
q=10 -8.1 -6.5 -5.7 -4.8 -4.4 -39 -3.6 34 -3.1 -3.0
q=15-94 -7.1 -5.7 -5.0 -4.2 -3.9 -3.4 -3.2 -3.0 -2.7
q=20 -9.1 -6.3 -5.4 -4.2 -3.7 -3.5 -3.0 -26 -2.5 -2.5
q=125 -7.7 -5.2 -4.5 -3.8 -31 -2.8 -2.5 -2.2 -1.7 -1.8
q=30-5.9 -4.0 -3.5 -2.8 -2.3 -2.2 -1.9 -1.6 -1.3 -1.2
q=35 -4.3 -3.1 -2.8 -2.0 -1.7 -1.7 -14 -1.1 -0.8 -0.8
q=40¢ -3.0 -2.3 -1.8 -1.3 -1.1 -1.0 -0.7 -0.6 -0.2 -0.7
q=45 -1.7 -1.7 -1.0 -0.7 -0.5 -0.6 0.4 -0.1 +0.0 -0.3
q=50 -8.5 -1.0 -0.4 -0.2 -0.1 -05 -0.1 -0.0 +0.1 -0.3
q=55 +0.6 -0.4 +0.1 +0.2 +0.1 -0.2 +0.2 -0.1 +0.1 -0.3
q=060 +1.2 -0.1 +0.1 +0.3 +0.2 0.1 +0.0 +0.1 +0.1 +0.0
q=865 +1.7 +0.0 +0.2 +0.2 +0.1 +0.1 +0.1 -0.1 -0.1 -0.0
q=70 +2.2 +0.1 +0.2 +90.2 +0.2 -041 -0.1 0.1 -0.4 -0.3
q=75 +2.5 +0.3 -0.0 +0.0 +0.1 -0.2 -04 -0.4 0.7 0.7
4=80 +3.0 +0.3 -0.1 -0.1 -0.1 -0.4 08 -0.4 -0.6 -0.9
q=85 +2.9 +0.5 -0.2 -0.3 -0.4 -0.6 -0.6 -0.8 -1.1 -1.2
q=90 +2.6 +0.7 -0.1 -0.4 -0.5 -0.7 -0.9 -1.0 -1.2 -1.3
q=05 +1.9 +0.7 -0.0 -0.4 -0.6 -0.8 -1.0 0.8 -0.9 -1.0

Table 2. T = 1060, skew = 0.5, 30,000 sites simulated columns: number of data points m = 10 (10)
100 rows: confidence levels ¢ = 5 (5) 95.

Error in Confidence Levels, Skew = 0.5

m=10 m=20 m=30 m=40 m=50 m=60 m=70 m=80 m=90 m=100
q=b -4.8 -4.7 -4.6 -4.3 -4.2 -4.0 -39 =37 -3.5 -3.4
=10 -8.7 -8.0 -7.2 -6.7 -6.2 5.7 -5.4 -4.9 -4.6 -4.5
q=15-10.9 -0.5 -8.3 -7.3 -6.8 -6.3 -3.8 -5.3 5.1 -4.8
q=20-11.3 -93 -8.1 -7.2 -6.5 -6.2 -5.8 -5.3 5.0 -4.5
4=25-10.7 -8.8 -7.5 -6.5 -6.0 -5.8 -5.5 -4.9 -4.6 -4.3
4=30 -9.7 -8.1 -6.9 -5.9 -5.5 -5.3 -5.0 -4.9 -4.2 -3.8
=35 -8.6 -7.3 -6.4 -5.4 -5.1 -4.9 -4.6 -4.3 -4.1 -3.6
q=40 -7.6 -6.3 -5.9 -5.2 -4.7 -4.6 -4.3 -3.9 -3.9 35
=45 -7.0 -6.0 -5.4 -4.8 -4.4 -4.2 -4.1 -3.8 -37 34
q=30 -8.3 -5.6 -5.0 -4.5 -4.4 4.1 -4.1 -38 -3.5 -3.3
4=35 -6.0 -5.3 -4.7 -4.5 -4.5 ~4.1 -3.9 -3.8 -3.5 -3.3
q=60 -5.7 5.3 -4.6 -4.5 -4.4 -3.9 -39 -3.7 -3.6 -3.3
q=65 -5.9 -5.1 -4.6 -4.5 -4.4 -39 -4.0 -3.9 -3.7 -3.5
4=70-9.9 -b.2 -4.7 -4.6 4.5 -4.0 -4.0 -4.0 -3.9 -3.5
q="75 -5.6 -5.3 4.8 -4.7 -4.8 -4.3 -3.8 -39 -4.1 -3.6
q=80-5.8 -5.6 -5.0 4.8 -4.8 -4.4 -4.0 -3.8 -3.8 -3.6
q=85 -5.3 -5.5 -5.0 -4.8 -4.8 -4.3 -4.0 -4.0 -3.6 -3.5
q=90 -4.6 -5.3 -4.9 -4.5 -4.5 -4.2 -39 -3.7 -3.3 -3.3
q=95 -2.7 -4.2 -4.3 -39 -3.5 -3.5 -3.3 -3.1 -2.9 -2.6
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Table 3. T = 100, skew = -0.5, 30,000 sites simulated columns: number of data poinis m = 10
{10) 100 rows: confidence levels 1 = 5 (5) 95.

Error in Confidence Levels, Skew = -0.5

m=10 m=20 m=30 m=40 m=50 m=60 m=T70 m=80 m=9% m=100

q=5 -4.5 -4.0 -3.5 -3.1 -2.7 -2.4 -2.0 -2.0 -1.9 -1.8
q=10 -6.9 -5.0 -4.0 -3.4 -2.8 -2.4 -2.1 -17 -1.5 -14
q=15 -6.6 -4.3 -3.1 -2.4 -1.8 -14 -14 -1.1 -0.8 -0.6
q=20 -4.6 -2.3 -1.5 -1.0 -0.6 -0.3 -0.2 +0.1 +0.2 +0.4
q=25 -1.7 -0.2 +0.1 +0.5 +0.7 +0.8 +0.9 +0.9 +1.3 +1.2

q=30 +1.1 +1.6 +1.8 +2.1 +2.0 +2.0 +2.2 +2.2 +2.2 +2.2
q=33 +3.5 +3.6 +3.4 +3.4 +3.2 +3.1 +3.1 +2.9 +2.9 +3.0
q=40 +5.7 +5.1 +4.8 +4.5 +4.4 +4.0 +3.9 +3.7 +3.7 +3.7
q=45 +8.1 +6.4 45.9 +5.4 +5.3 +4.7 +4.6 +4.3 +4.3 +4.5
q=50 +9.9 +7.8 +7.0 +6.1 +6.0 +5.6 +45.1 +4.9 +4.9 +4.9
g=53 +11.8 +9.0 +7.7 +6.7 +6.5 +6.0 +5.6 +5.2 +35.1 +5.1
q=60 +13.1 499 +8.2 +7.4 +6.9 +6.4 +6.2 +5.6 +5.5 +5.1
q=65 +13.9 +10.7 +8.8 +8.0 +7.0 +8.7 +6.5 +5.8 +5.6 +5.2
q=70 +14.0 +11.4 +9.4 +8.2 +7.1 +6.8 +6.5 +6.0 +5.7 +5.4
q=75 +13.5 +11.6 +9.7 +84 +74 +6.9 +6.3 +6.0 +5.7 +5.4
q=80 +12.3 +10.8 +9.5 +8.4 +7.4 +6.9 +6.1 +5.7 +5.6 +5.2
q=85 +10.4 495 +8.7 +7.9 +7.0 +6.5 +5.8 +5.3 +5:1 +4.8
q=90 +7.7 +7.3 +7.0 +6.4 +5.7 +5.3 +5.1 +4.6 +4.3 +4.0
q=95 +4.2 +4.2 +4.1 +4.0 +3.8 +3.5 +3.3 +3.3 +2.9 +2.8

Table 4. T = 100, skew = 1.0, 30,000 sites simulated columns: number of data points m = 10 (10)
100 rows: confidence levels g = 5 (5) 95.

Error in Confidence Levels, Skew = 1.0

m=10 m=20 m=30 m=4) m=530 m=60 m=70 m=80 m=80 m=100

q=5 -4.9 -4.9 -4.9 -4.7 4.7 -4.6 -4.6 -4.5 -4.4 -4.3
q=10-9.2 -8.8 -8.4 -8.0 -7.8 -7.6 -74 -7.2 -6.9 -6.7
q=13 -12.2 -11.4 -10.5 -9.8 -9.3 -8.9 8.7 -8.2 -8.0 -7.6
q=20 -13.6 -12.2 -11.5 -10.7 -9.9 -9.4 -8.9 -8.5 -8.1 -7.7
q=25%-13.8 -12.5 -11.5 -10.7 -10.1 -9.3 -8.8 -8.4 -1.9 -7.6
q=30-13.3 -12.1 -11.0 -10.3 -9.5 -8.0 -8.6 -8.1 -1.6 -7.4
q=35 -13.0 -11.5 -10.4 -9.8 -9.2 -8.4 -8.3 -7.4 -7.3 -7.0
q=40 -12.3 -10.8 -9.9 -9.1 -8.7 -1.9 -1.8 -7.1 -6.8 -6.6
q=45 -11.7 -10.1 -9.3 8.7 -8.0 -74 ~1.2 -6.8 -6.4 -6.3
q=50 -11.4 -9.5 -8.9 -8.3 -1.7 -7.2 -6.7 -6.5 -6.4 -6.0
q=55 -10.9 -0.5 -8.2 -8.0 -1.7 -6.9 -6.9 -6.1 -6.2 -5.9
q=60 -10.9 -9.3 -8.0 -1.6 -74 -6.8 -6.4 -5.9 -5.9 -5.9
q=065 -10.7 -9.1 -8.1 -7.6 -1.3 -6.7 -6.1 -5.8 -5.9 -5.7
q=70 -10.7 -9.2 -7.9 -7.3 -1.1 -6.4 -5.8 -3.6 -5.6 -5.7
q=75 -10.9 -9.2 -7.9 -7.2 -6.9 -6.5 -5.9 -5.8 -5.5 -5.5
q=80 -11.0 -9.0 -7.9 -7.2 -6.9 -6.3 -5.8 -5.7 -5.4 -5.4
q==85 -10.4 -8.9 -71.8 -7.0 -6.6 -6.0 -5.7 -5.6 -5.2 -5.1
q=90 -9.5 -8.8 -7.3 -6.6 -6.1 -5.6 -5.1 -5.1 -5.0 -4.6

q=95 .7.7 -7.1 -6.1 -3.5 -5.0 -4.7 -4.2 -4.0 -4.0 -3.8
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Table 5. T = 100, skew = -.,_ sites simulated columnns: number of data points m = 10
[10) 100 rows: confidence levels g = 5 (5) 95.

Error in Confidence Levels, Skew = -1.0

m=10 m=20 m=30 m=40 m=50 m=60 m=70 m=80 Wm=90 =100

q=h -4.6 -34 -2.5 -1.9 -1.5 -1.1 -0.8 -0.6 -0.4 -0.1
q=10 -5.6 -2.7 -1.2 -0.1 +0.3 +0.6 +1.1 +1.3 +5.4 +1.4
q=15 -3.1 +3.3 +1.3 +2.5 +2.6 +2.8 +3.1 +3.3 +3.3 +34
q=20 +1.0 +3.7 +4.4 +4.9 +4.9 +5.0 +5.3 +5.2 +5.0 +5.0
4=25 +5.6 +6.9 +7.2 +7.5 +7.3 +7.2 +7.3 +7.3 +6.9 +6.7
=30 +9.7 +9.9 +9.8 +9.9 +9.4 +8.1 +8.3 +48.1 +8.4 +8.2
q=35 +13.9 +131 +12.5 +11.9 +11.6  +11.0 +11.0 +10.7 +10.1 +8.8
q=40 +18.2 +16.7 +15.3 +14.2 +13.7 +12.8 +12.4 +12.2 +11.6 4111
q=45 +22.5 +16.9 +180 4166 +156 +156.6  +139 +13.7 +13.0 +12.3
=80 +25.7 +22.9 +20.6  +18.9 +17.7 +16.8  +15.5 +14.8 +14.1 +13.4
q=53 +274 +25.5 +23.1 +21.3 4199 +18.2 +16.9 +15.9 +15.3 +14.5
q=060 +27.7 +26.7 +24.6 +23.1 +21.5 +20.90 +18.6 +17.3 +162 4158
=06 +26.6 +26.4 +25.0 +23.6 +22.3 +21.0 +19.5 +18.5 +17.4 +16.4
q=70 +24.6  $248  +24.1 4231 4222 4212 4200 4189 4180  +17.0
q=75 +21.6 +22.1 +21.8 +213 4208 +20.1 +19.2 +185 4177 4169
4=80 -+18.0 +18.6 +18.5  +18.3 +18.1 +17.8  +17.3 +16.8 +16.3 +15.9
=385 +13.9 +14.3 +14.4 +14.4 +14.3  +143 +14.1 +13.8 +13.6 +13.5
q=90 +%.5 +9.8 +9.8 +9.8 +9.8 +9.8 +9.7 +9.7 +9.7 +9.6
q=95 +4.9 +3.0 +5.0 +5.0 +5.0 +5.0 +5.0 +5.0 +5.0 +35.0

The errors shown in Tables 1-5 show inaccuracies which make the use of (10) ques-
tionable for larger (but frequently occurring) values of skew. This creates a significant
problem concerning their use in general since even if the site estimate for skew is very
sinall, say zero, it is usually the case that the number of data points available do not
allow one to rule out with high confidence the possibility that the skew is really large
cnough to fall in the range where the simulations above show considerable inaccuracy
[Whitley and Hromadka, 1993).

7 Conclusions

Approximate formulas are given in Chowdhury and Stedinger {1991] for confidence
levels for estimating the T-year flood when the mean, standard deviation, and skew
are all estimated from data at a single site. The accuracy of these formulas is tested
by means of simulations for the values of skews y=-1{1/2)1, data points at the site
m=10{10}100, and confidence levels q=5(5)(95). These simulations show that the
use of these formulas is problematic in most circumstances.
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However, a major contribution of Chowdhury and Stedinger [1991} which should not
be overlooked is in suggesting a general form that an approximation formula might
take: namely, equation (10). The derivation of X in [Chowdhury and Stedinger, 1991]
by means of relatively crude first order asymptotic expressions suggests that a better
A might make the Chowdhury and Stedinger formula (10) more accurate.
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