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Abstract

An underlying reason for the proliferation of rainfall-runoff models, is the lack of
success in any one rainfall-runoff model in estimating runoff from rainfall data. A
principal reason for this lack of modeling success is due to the ungertainty in the
effective rainfall over the catchment (Hromadka and McCuen, 1989). That is, not
only is the rainfall highly variable with respect to both space and time (given a pint
measurement of rainfall), but the rainfall less losses (i.e., “effective rainfall"; that is,
the runoff after all losses due to soil infiltration, evaporation, etc., are subtracted) is
highly variable over the catchment. Generally, the runoff estimate for a several
square mile catchment is based upon a single rain gauge measurement that
oftentimes is not even in the catchment. As a result, the runoff predictions
obtained from any rainfall-runoff model are highly uncertain.

In this work, the rainfall-runoff modeling problem is reanalyzed with respect to the
theory of stochastic integral equations. The results of the presented work have been
adopted by two major flood control governmenta! agencies (Hromadka and
McCuen, 1986a,b), and provide a good case study in the application of statistics,
stochastics, and computational method for solving modern problems.

The main objective of this work is to present a method of statistical or stochastic
prediction in rainfall-runoff analysis in contradistinction with the usual
deterministic prediction techniques.
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Introduction

The problem of predicting watershed runoff (i.e., flood flows)} from rainfall
data is of key importance lo society, affecting the safety of millions of people
who live in lowland areas, and costing hundreds of millions of dollars to
provide flood protection. As an indication of the difficulty experienced by
modelers in attempting to predict runoff from rainfall data, more than one-
hundred rainfall-runocff models have been reported in the literature
(Hromadka et al, 1987), resulting in a wide range in predicted values of
runoff depending on the particular rainfall-runoff model chosen.

The state-of-the-art in rainfall-runoff ‘models is to use computers to
approximately solve the various complex mathematical partial differential
equations (PDE) that describe the hydrologic cycle as distributed over the
catchment (or watershed), and to approximately solve the flood flow timing
PDE involved in conduit flow routing (i.e., time varying flow effects in
streams, channels, pipes, or other structures). Empirical equations are used
to describe the hydrologic cycle time-varying components of evaporation,
plant transpiration, infiltration of rainfall into the soil, percolation of soil-
moisture into deeper soils, and ponding of water, among other effects. The
hydraulic effects of flood flow routing in streams and conduits are described
by the nonlinear PDE known as the Navier-Stokes equations, but are
approximated by simplified computational algorithms such as the kinematic
wave, Muskingum, convex, or other flow routing techniques (see Hromadka
et al, 1987). The main thrust in the computer modeling of the rainfall-runoff
process is to subdivide the catchment into smaller subcatchments (or
subareas) that are "linked" together by the hydraulic flow routing models
used to represent flow routing effects in the streams and channels. Each
subarea is assumed to have a representative rainfall-runoff response,
described by a unique set of hydrologic cycle parameters and equations. The
subarea runoff, which is assumed to depend only on the rainfall history (and
subarea hydrologic cycle characteristics), concentrates at a "nodal point”,
which represents the time distribution of runoff for the subject subarea, for
the subject storm. The assemblage of all these links and nodes forms the
catchment "link-node” rainfall-runoff model.

An underlying reason for the proliferation of rainfall-runoff models is the
lack of success in any one rainfall-runoff model in estimating runoff from
rainfall data. A principal reason for this lack of modeling success is due to
the uncertainty in the effective rainfall over the catchment (Hromadka and
McCuen, 1989). That is, not only is the rainfall highly variable with respect
to both space and time (given a point measurement of rainfall), but the
rainfall less losses (i.e., "effective rainfall”; that is, the runoff after all losses
due to soil infiltration, evaporation, etc., are subtracted) is highly variable
over the catchment. Generally, the runoff estimate for a several square mile
catchment is based upon a single rain gauge measurement that oftentimes i5
not even in the catchment. As a result, the runoff predictions obtained from
any rainfall-runoff model are highly uncertain.
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In this work, the rainfall-runoff modeling problem is reanalyzed with respect
to the theory of stochastic integral equations. The results of the presented
work have been adopted by two major flood control governmental agencies
(Hromadka and McCuen, 1986a,b), and provide a good case study in the
application of statistics, stochastics, and computational methods for solving
modern problems. The main objective of this work is to present a method of
statistical or stochastic prediction in rainfall-runoff analysis in
contradistinction with the usual deterministic prediction techniques. The
work effort is presented in four parts as follows:

A.  Development of a_generalized stochastic_integral equation
representation of rainfall-runoff modeling response. Although over
one-hundred link-node modeling techniques are currently reported,
almost the totality of these rainfall-runoff models can be shown to be
composed of similar fundamental mathematical components. As a
result, the rainfall-runoff modeling approach can be "unified" into a
single mathematical expression as a convolution integral equation.
Due to the noted variability in the effective rainfall over the
catchment, the convolution integral equation is developed into a
stochastic integral equation.

B. Correlation of the stochastic integral equation to catchment
characteristics. In order to apply the stochastic integral equation at
ungauged catchments, a method to correlate the identified distribution
of transfer functions (used in the stochastic integral) is developed.
Because only a few catchments have both rainfall and runoff data,
there is a need to develop synthetic runoff data given only rainfall
data (which is generally much more available). In this part of the
analysis, synthetic runoff may be developed from rainfall data and
catchment characteristics.

C Estimating Uncertainty in Rainfall-Runoff Modeling_Estimates. From
the stochastic integral equation formulation, uncertainty estimates in
prediction may be developed.

D. Application of the Stochastic Integral Equation. The stochastic
formulation is applied to rainfall-runoff data from Los Angeles,
California, United States.

The above provides a good example of the application of stochastic integral
equations and computation to "real world" problems. With the ever-
increasing inexpensive computational power afforded analysts, more
attention is being paid towards developing computational estimates in terms
of probabilistic distributions rather than in single-valued deterministic type
answers. This work presents just such an application of probabilistic
thinking to the important problem of predicting flood flows for flood
protection.
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A, DEVELOPMENT OF A GENERALIZED STOCHASTIC INTEGRAL

EQUATION REPRESENTATION OF RAINFALL-RUNOQFF
MODELING RESPONSE

The study of Hjelmfelt and Burwell (1984) provides a good case study as to
the spatial and temporal variation of effective rainfall over a catchment. In
their study, 40 adjacent plots of land, each 27.5 m x 3.2m in size, were
maintained to "simulate an intensively sampled watershed of field size,” so
that the results of measurements would describe the “spatial variation of
runoff and water retention. Uniformity in applied management was
maintained among the 40 plots, so that in the context of field-size watershed
modeling even comprehensive mathematical models would treat the plots
as identical." The runoff quantiiies were measured in tanks located at the
outlet of each plot. A rain gauge was located within the 40-plot test site.

Based on the vicinity of these plois to each other and with respect to the rain
gauge, one would expect similar runoffs produced from each plot. The
measurements showed that there was a wide range in runoff measurements
even though the plots could be considered identical.

The Hjelmfelt and Burwell experiment (1984) is useful in introducing some
of the concepts to be used in later sections of this paper. Let's modify the field
experiment by assuming that each plot drains into a small channel which
ultimately joins at some central collection point. Each plot has a runoff
measuring device that measures the flow rate versus time, and the central
point measures the combined runoff from all 40 plots. The runoff from
subarea R;jis noted as qjl(t) for storm event number i, where qji(t) is the
runoff flow rate as a function of time. The runoff flow rate measured at the
central collection point is noted as Qgi(t) where hereafter this collection point
is called a stream gauge. We additionally assume that each of the 40
connecting channels deliver each qji(t) to the stream gauge in such a fashion
such that the subarea Rj runoff, as measured at the stream gauge is simply

qji{t - 7); that is, each qji(t) is translated in time by a constant travel time of 1
for subarea R;, regardless of the storm event.

Based on the above assumptions, the stream gauge measured runoff, QgHt),
can be equated to the several gji(t) by

40
QgD 2, qj(t - 1) 1)
=1
where each gji(t - 7)) = 0 for t < 1j,

In our thought experiment we actually know the gji(t) due to the subarea
runoff measurement devices. We also know the precipitation measured at
the rain gauge, Pgi(t). However, how do we relate the Pyi(t) to each gji(t}, and
the Qgi(t), given the observed variability?
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«unsider another plot, R41, which is identical to the other 40 plots, and place
this 41st plot at the rain gauge location. The 41st plot is also measured for
runoff flow rates, qa1!(t). It is assumed that due to the rain gauge and Ry
being immediately adjacent to each other that the rainfall data, Pgi(t), is an
accurate measure of rainfall over R41 and, therefore, enables a precise
relationship to be developed between Pgl(t)} and qa1'(®).

The relationship between Pi{t) and q41}(t) is very complex, however,
involving many time varying components of the hydrologic cycle. Given
this rainfall-runoff relationship for R4y, defined by the operator F where F
transforms each Pgi(t) into q41'(t), then F: Pgl(t) - q41i(t), and we could then
use either F(Pi(t}) or q41i(t) to compute each gji(t), for j = 1,2,-,40.

Due to the variability between the gji(t) measured by Hjelmfelt and Burwell,
however, we must assume that the gji(t) are not equal, for a given storm i,
but are probabilistically distributed with respect to each other.

Let each of the 40 plots’ runoff be equated to q41i(t) by use of the random
variables [l]-] and [Gi] for each Ry where for each storm event, i,

qjit) = A4 gayit - 6 2

where q41i(t - 61) = 0 for t < 8ji. The distributions of (Aj] and [8j] could be
developed from the frequency distribution of values obtained by a large
collection of values determined from Eq. (2). It is noted that the several
~andom variables may be all mutually dependent.

nen by means of Eq. (2), the stream gauge runoff, Qg!(t) can be written as

40 .
Qi) X 2§ qaritt- 1y~ 6 (3)
j=t

where the set of values of {A;, Oji} are samples of the corresponding random
variables.

Our analysis now turns to the important problem of prediction. Assuming a
hyBothetical storm event to occur at the study site, resulting in the rainfall
Ppl(t) and the Rqy runoff, q412(t), what would be the estimate of runoff at the

stream gauge? Because we are in a prediction mode, the values for each AP
and 8;P are unknown for j = 1,2,-,40, which are samples of mutually

dependent random variables distributed as D"i] and [ej], respectively. Then
our estimate for runoff at the stream gauge is the stochastic process [QgP(B)]
where

40
[QeP(M] = 3 [Aj] 312Xt - - [6) ' @
=1
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In Eq. (4), we have used the "measured” gs1(t} to develop {QgP(t)] in order to
simplify the presentation; the F(PgD(t)) could alse have been used to
motivate the estimate given in Eq. (4).

The general problem is to be given only Pgi(t) data, requiring the additional
problem to be solved of defining the previously discussed operator, F, used to
develop and estimate Q41P(t) or its equivalent, effective rainfall (ie.,
rainfall less losses due to infiltration of rainfall, local ponding, evaporation,
etc.). In the remainder of this paper, measured runoff, such as q41(t), is
assumed to be available for model development purposes. The additional
complexities involving the definition of the operator F are addressed in
subsequent text. ;

Stochastic Integral Equations in Rainfali-Runoff Modeling

Our mathematical problem setting is to predict runoff quantities at a
specified point, given a hypothetical rainfall event defined to occur at
another point. In order to develop such a prediction, we construct a rainfall-
runoff mode! which incorporates catchment hydrologic (i.e., rainfall-runoff
relationships) and hydraulic (i.e., characteristics of water flow in channels
such as flow speed and channel storage effects} information with the
specified rainfall input to produce an estimate of runoff. We are also given
historic runoff data where a stream gauge is located, and the corresponding
rainfall data at the rain gauge site. This historic rainfall-runoff data is used to
calibrate the various modeling parameters.

A review of the pertinent literature indicates that no rainfall-runoff
modeling approach appears to have adequately solved the runoff prediction
problem. That is, a purely deterministic rainfaii-runoff model does not
represent the uncertainty in the prediction, and hence does not provide a
range of probable values in runoff estimates computed from the
performance of the model in agreeing with the historic data. The use of a
stochastic integral equation provides a means to include this rainfall-runoff
modeling uncertainty with the runoff estimates.

In order to apply stochastic integral equations to rainfall-runoff modeling, a
quasi-linear rainfall-runoff modeling structure is developed. The model
structure represents a wide spectrum of modeling structures in common use
today and, therefore, is useful in analyzing how almost all rainfall-runoff
models operate.

To simplify the mathematical development, an additional source of data is
assumed available, namely, effective rainfall data (i.e., which is measured at
the rain gauge site). More specifically, the work of Hjelmfelt and Burwell
{1984) is recast into an idealized situation where our study catchment, R, can
be subdivided into m square, 1-acre size, subareas, Rj, j=1,2,--,m, with each
subarea being nearly identical in its rainfall-runoff properties. Additionally,
at the rain gauge site another small 1-acre subarea is specified and monitored
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so that for each storm event, i, the rainfall and runoff from the subarea are
both measured (assume the rain gauge is placed in the center of the subarea).
That is, for each storm event i, we obtain the data Pgi(t) and ezi(t), which
reflect the measured rainfall and effective rainfall data, respectively, from the
rain gauge site (see Fig. 1.) We assume that all of the subareas, including our
monitored subarea, are of such similarity that one would expect nearly
identical rainfall-runoff responses. (This idealized problem setting is similar
to the situation reported in the referenced Hjelmfelt and Burwell (1984)
study.) Use of the egl(t) data greatly simplifies our problem in that we
eliminate {for now) the need to construct a hydrologic cycle model to predict
eg‘(t) given the P,i(t) data. Thee 1(t) data assumed available to us accurately
represents all of the hydrologic cyc]e components of infiltration, antecedent
moisture, initial abstraction, evapotranspiration, and other factors.
Consequently, the predictions of subarea R; effective rainfall, noted as e,'(t)
for storm event i, can be directly associated to the egi(t) data, with variations
between the effective rainfalls considered to be random fluctuations. By
constructing our rainfall-runoff model structure to be a function of the eg‘(t)
data and also the probablhstlc variations between eyi(t) and the subarea
effective rainfalls ej(t), j = 1,2,-,m, the model output will be found to be a
stochastic process in that our estimates of runoff at the stream gauge is not a
single outcome, but a distribution of outcomes. Any criterion variable of
interest (such as peak flow rate, channel size, etc.} will then be concluded to
be a random variable whose distribution of values reflects the random
variations between the eji(t) and egi(t), among other factors.

For storm event i, the runoff hydrograph from subarea j is noted as g;l(t).
The effective rainfall distribution over subarea j, for storm i, is roted by e]‘(t}
Assuming that for storm i there are characteristic travel times for translation
channel routing, the runoff hydrograph at the stream gauge, Qg'(t), equates to
the m-subarea contributions by

left) = Qmi“’) = E QJ1 {t - T]’i) (5)

=1

where ‘L’ji is the sum of characteristic travel times for all channe! links which
connect subarea j to the catchment R stream gauge; and Qm!(t) is the m-
subarea rainfall-runoff model estimate of runoff for storm event i. We now
expand upon the elements used in Eq. (5).

Subarea Effective Rainfall, efi(t)

In each subarea, R], the effective rainfall is e]‘(t) In our problem, however,
ej{t) would be unknown because there is neither a stream gauge nor rain
gauge in Rj. Assuming that e]‘(t) can be written as a linear combination of
translates of the measured egi(t) gives

-
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Figure 1. Subarea Effective Rainfall as a linear Combination

of Translates of Measured Effective Rainfall
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N
eii(t) = :Z{ ?Liki egi(t - Bjki) (6)
where )
nii = number of translates of egi(t) used to model ¢ji(t), from storm i;
Ajd = coefficients for subarea j and storm i; k = 1,2~ nj;
Biki = constant timing offsets for subarea j, and storm i, where

egilt - 9jl<i) = 0 for t < O};
and all the nyl, Aji!, Bjki, vary on a storm basis, i.

The ljki and Bjki are samples of random variables distributed as [Rik} and

[6ji), respectively. It is seen that Eq. (6} is a discrete approximation of a
convolution.

Subarea Effective Hydrograph, qji(t)

Given eji(t), the runoff hydrograph for storm i, gjit), is given by the
convolution.

t
qit) = f efi(t - s) ¢ji(s) ds 7
50

where ¢ji(s) is a transfer function (TF), for subarea j, and for storm i. It is
noted that the ¢ji(s), may differ between storms, i.

Combining Egs. (6) and (7) relates qgi(t) to the available data, egi(t), by

t .
i

5

gi =1 3 Al egilt- i - 5) ji(s) ds ®)
k=1
s=0
By a change of variabies, .
t 1
q;i(t) =J eg'(1-5) Z i ¢ji(s - 6D ds 9
s=0 k=1

Combining Egs. (5) and (9) gives the Qmnl(t) estimate for the runoff
hydrograph at the stream gauge,
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m [t ' :
Qi) = E ] cgi(t-s)] ljki q),-i(s - iji - Tji) ds {10)
i=1 S=0 k=1
which is rewritien as, )
¢ m 3 _ o
Qmlily =f egi(t~s) z Z ljki (Di‘(s - Bjk' - Tj‘) ds (11)
4=0 =1 k=1

At this point of model development, it is recalled what data are available for
storm event i. We only know Pgl(t), egi(t), Qg(t), and watershed
characteristics. The information necessary to define the l;ki, iji(s), ¢ji(5), &jl,
are simply unknown. Given egi(t), however, we may suspect that the eji(t)
are all different between each subarea and with respect to eg!(t), and these
differences vary on a storm by storm basis. Thus, the ?«.jki and e;ki are all
samples of random variables which may be strongly mutually dependent.
Additionally, the values of ¢;i(s) and eii may be random on a storm basis. If
we knew the probability distributions of all of these random variables and
processes, we could incorporate the distributions into Eq. (11) and our model
estimate for a prediction of runoff would not be a single outcome, but a
distribution of probable outcomes, each a possible candidate for being the
runoff hydrograph at the stream gauge for the future storm event.

A Stochastic Integral Equation Formulation

Equation (11) can be written as a stochastic integral equation

t
Qmit) = Qi) = f eji(t - s) ni(s) ds (12a)
s=0
where from Eq. (11}, L
m B
i) 3, 3 Al fits - B - i) (12b)
=T k=1

In Eq. (12) Mi(s) is a TF, for storm i, for the entire catchment. Consequently,
given a set of storm effective rainfalls, {egi(t)}, there is an associated set of
realizations, {ni(s)}, which not only represent the several unknown
variations in hydraulic response in R (represented in Eq. (12b) by the
parameters ¢j'(s) and 1j)), but also the several variations in the effective
rainfall distribution (i.e., the hydrologic response) over R (represented in Eq.
(12b) by the parameters Ak}, 6k}, nj)). Because all of these uncertainties and

variations cannot be evaluated without a supply of rainfall-runoff data for
each subarea and channel hydraulic link used in Qmi(t), the modeling output
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of Q1}{t) must be, in a predictive mode, considered a stochastic process.
Given a design (or predicted) effective rainfall distribution at the rain gauge
site of egD(t), then the model output must be a stochastic process, [Q1P(t)],
where

t
[P = [ egl(t-s) [n(s)] ds (13)
5=0

where [n(s)] is the stochastic process with realizations developed from Eq.
(12). In Eq. (13), the brackets are notation for a random or stochastic process.
In Eq. (13), [n(s)] equates to the distribution of TF's developed by inserting the
mutually dependent distributions of [Ajkl, [8jk}, [9j(s}], [1j], and [nj], into Eq.
(12b). The last result is important because even though the individual

distributions used in Eq. (12b) cannot be evaluated (due to the lack of flow
data), the effect of the several interdependent random processes are properly

represented by the distribution of TF's, [rn(s}], used in Eq. (13).

Effects of Channel Routing

In this section, the development leading to the rainfall-runoff models of Egs.
(11) and (12) is extended to include the effects of unsteady flow routing due to
channel storage effects. Channel routing effects are generally considered to
be important, andhave fueled the proliferation of rainfall-runoff models. Let
I1{t) be the inflow hydrograph to a channel flow routing line (number 1), and
O1(t) the outflow hydrograph. A linear routing model of the unsteady flow

process is given by
n

O = 3 ag Lilt-an) (14)
4=1

where the ap are coefficients which sum to unity; and the as are timing
offsets. Again, [1(t- ots) = 0 for t < atpg. Given stream gauge data for [1(t) and
O1(t), the best fit values for the as and a4 can be determined by a least
squares approximation. It is seen that the translation routing model of Eq. (1)
can be written in terms of Eq. (14) with I1(t) = qii(th; n1 = 1; a4 =1, and oy =
.

Should the above outflow hydrograph, O1{t), now be routed through another
link (number 2), then I2(t) = O1{t) and from the above
ny ny n
Op(t) = Z ap Dit-ap) = z s 2 an Lt - oy - 0p) (15)
4=1 £=1 A=
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(It is understood that an # a for 4 = 4. .The 4 and 4 notation also
differentiates between the values of a (and o) used in Eq. (15).)

For L links, each with their own respective routing data, the above linear
routing technique results in the outflow hydrograph for link number L,

OL(1), being given by
np-q - n m
OL= 3 ag 2 arg = X % X aqhit-anq-ap -0y, -oq) (16)
4-1=1  4-1=1 =1 4=1

Using an index notation, O1.(t) is written as
OL(t) =X acs Iit-oes ) : : - (17)

It is seen that Eq. (17) is an approximation of another convolution.
Hromadka and Whitley (1988} show that almost all flow routing techniques
in use today can be represented by the discrete convolution approximation of
Eq. (17}, with constant parameters. The various routing methods differ in
their respective empirical relationships in estimating these parameters;
hence, the variocus routing methods result in different equations. Only by
actual flow routing data can the true values of the a<s and ocs be
determined for each channel link used in the link-node model. Because
such flow data is rarely available (for even one channel link), various
empirical equations are used to estimate these parameters, resulting in a
significant range in flow routing estimates.

For subarea Rj, the runoff hydrograph for storm i, gji(t), flows through L;
links before arriving at the stream gauge and contributing to the total
measured runoff hydrograph, Qgi(t). All of the constants acs and aes are
variable on a storm by storm basis. Consequently from the linearity of the
routing technique, the m-subarea link node model is given by the sum of m
contributions, q,-’(t), where

I

=

where <t‘>i are associated to Ry, and all data are defined for stormi. It is noted
that in order to preserve continuity of mass,

E ai<f>i =1 (19
%

For the above linear approximations for storm i, Egs. (6), (9), and (18) can be

combined to give the final form for our rainfall-runoff model,

1
m

f y
Qn'(t) = 2 2 ai(bjj egi(t-s) 2 7‘-iki ¢,ji(5 - Biki - (Ii<f>i) ds (20)
s:=() k=1

=1 <b,
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-ecause the measured effective rainfall distribution, egi(t), is. independent of
the model, Eq. (20) is rewritten as

f m ny
Qmi(t) =[ eglt-s) 3 Y alets; 2 Ak (s - 8y - aless) ds (21)
5=0 =1 % k=1

where all parameters are evaluated on a storm by storm basis.

Equation (21) describes a model which represents the total catchment runoff
response based on variable subarea TF's, qui(s); variable effective rainfall
distributions on a subarea-by-subarea basis with differences in magnitude
(K1), timing (8j), and pattern shape; and channel flow routing translation

and storage effects (parameters aid;.j and aid)’-).
The major difference between the rainfall-runoff models of Egs. (11) and (21)
are the additional complexities introduced due to inclusion of a better
approximation of unsteady flow routing effects in the channel links used in
the link-node representation of the catchment. Almost all rainfall-runoff
models in use today use a routing technique such as convex, Muskingum,
translation, kinematic wave, or the most recent diffusion (or zero-inertia)
form of the St. Venant equations. The convex, Muskingum, and translation
models all frequently result in surprisingly similar routing effects when
storms are modeled according to storm classes. That is, if one categorizes all
storms into a few classifications such as severe, mild, minor, (or others, if
data permits}, then the various routing methods can have their respective
parameters defined on a storm class basis. For example, if translation routing
Is used then one could specify for each channel link a certain flow velocity or
translation time which depends upon the storm class the subject storm event
isin. In this way low flows would be routed with slower flow velocities than
would be used in high flow cases. The use of storm classes provides a form
of nonlinear response in the rainfall-runoff model which appears to be
generally considered as important among many hydrologists. Therefore, the
model of Eq. (21} can be argued to reasonably represent a variety of unsteady
flow routing methods when an equivalence or storm classification is
properly set up. This last result is useful because we can now examine
rainfall-runoff model structures in nearly total generality.

We now consider an important extension of Eq. (21). Suppose a simple
storm classification system is developed where the effective rainfall
distribution measured at the rain gauge, eg'(t), can be classified as being in
one of three categories: (1) severe; (2) moderate; or (3) minor. Thus, if egi(t)
is a class 1 storm, we would expect all channel links to be flowing close to
capacity due to high runoffs throughout the catchment. All routing
parameters are defined as class 1 parameters and
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i

t m ni
Qul(t) = f eglt-s) 2, 2. a]<f>i Yy Akt oji(s - Bkl - a1</>]-) ds (22)
s=0 =1 <% k=1

where the subarea TF's are similarly defined as being class 1 types. (It is
noted that the use of superscript 1 indicates values dependent upon storm
class, and not i=1.)

Suppose in prediction, one is interested in the probable runoff at the stream
gauge for a hypothetical storm event that is considered to be in storm class 1.
Then the estimate of runoff is similar to the results of Eq. (22) except that
now we have a distribution of outcomes, represented by the stochastic .
process

¢ A

m N
[QmPW] = J eP(t-s) ), D acs; >, Al oji(s - [83c1] - olessp) ds (23)
s k=1

s:o ]21

where [Ajk'} and [0jk!'] are distributions of mutually dependent random
variables, which are now assumed to have a different probability distribution
depending upon the storm class. The development of runoff equations for
storm class 2 and 3 follow analogous to the development of Eq. (23), resulting
in a set of stochastic prediction equations, dependent upon the storm class
system.

Stochastic Integral Representation

The rainfall-runoff model of Eq. (23) can be written as a set of stochastic
integral equations which provide a variation in prediction due to the storm
class system,

¢

QI =j e2(t-s) N(s)]g ds 24)
s=0

where [n(s)]q is the stochastic process of catchment TF's, associated to storm

class q when egD(t) is in storm class g; and where (s}l equates to the totality
ni

I A

(N =2, 2 ades; 2 [k 6 (s - 18] - 09ensy) (25)
=1 <ty k=1

From Eq. (24), the effects of the uncertainty in the effective rainfall over R,

and the randomness in the unsteady flow channel routing parameters, are

all property integrated into the [n(s)}, realizations which reflect the combined

distributions of all the considered hydrologic and hydraulic effects. This last
result is important because almost all rainfali-runoff models in use today can
be written in the form of Egs. (24) and (25), but use a particular set of
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constants (or functions) given by the estimates ¢;d(s), ﬁquj, a%j, 8k, A9,
and njd, as defined on a storm class basis, q. The various rainfall-runoff
modeling types all differ in their respective estimates of these various
constants and functions, and hence the rainfall-runoff models differ in their
respective deterministic estimates of runoff. All of the deterministic rainfall-
runoff models neglect the randomness in {Ajkq] and [8jk3]. Only when
sufficient rainfall-runoff data and channel flow "link" data are available, can
the various constants {and functions) used in Eq. (25) be accurately computed,
and the distributions of [8jk} and [Ajk] be accurately determined. In the
following section, the stochastic integral equation of Eq. (24) is used to
sidestep the problem of insufficient data needed to determine the various
components used in Eq. (25).

B. CORRELATION OF THE STOCHASTIC INTEGRAL EQUATION TO
CATCHMENT CHARACTERISTICS

The previous sections develop a rainfall-runoff model structure which
produces probabilistic estimates of runoff at a stream gauge given a single
source of measured effective rainfall data. Almost all deterministic rainfall-
runoff models in use today are seen to be special cases of Eq. (24) and (25),
except that the various constants, functions, and distributions, are replaced
with mean value estimates determined from particular empirical equations.
The derived distribution of TF's from Eq. (24) and (25) are seen to represent
the link-node model response, given all constants, functions, and
distributions, are accurately defined. In this section we will apply our
stochastic integral equations to actual rainfall-runoff data.

The Qqi(t) model links the data pair {egi(t), Qgi(t)}, for each storm i, for the
given modeling assumptions. The sampling of all random processes is
integrated into the time distribution of the realization, ni(s). Thus for each
storm event i, there is an associated 1i(s), just as there would be an associated
set of samples {ljki, B;ki; j=1,2,,m; k=1,2,---,100} and other random variables.

To proceed with the analysis, it is assumed that there are "sufficient”
effective rainfall data measured at the rain gauge site such as to develop
equivalence classes of effective rainfall distributions. These storm classes are
noted as <§q> where q is the storm classification. Any two events in one

class <€g> would be considered to have identical associated parameters and
random variable distributions such as used in Eqs. (24) and (25). It is
assumed that there are sufficient effective rainfall data to develop such a set
of storm classes <€q> such that a reasonable stalistical analysis can be made
for each storm class individually.



250 Environmental Modeling — Vol. III

Let <€p> be a class of storms. Let eit) be an .element of <Ep>, fori=1,2n,,

where n, is the number of elements in <§3>. To each egi(t) there is an
associated Q,i(t) measured at the stream gauge. Each pair of realizations
{eoi(t), Qol(t)} can be linked by a stochastic integral equation, resulting in n,

realizations, {nyi(s); i = 1,2, ne}.
Each n,i(s) can in turn be represented by a summation graph, Myi(s), where

M,i(s) = f No{t) dt (26)
=0

Figure 2 shows a plot of M,i(s) developed from storms considered to be of
similar severity over a catchment in Los Angeles County, California. (In this
case a lost function was used on measured rainfalls to estimate effective
rainfalls, egl(t) for each storm. For our purposes, these eg'(t) can be
considered as "measured” for now.) By examining the plots, usually a
normalization technique becomes apparent which aids in reducing the data
into a form which is more easily analyzed by statistical techniques. In Fig. 2,
plotting each M,i(s) divided by its ultimate, discharge, Uy, (i.e., Uyl = Myi(s
=o0)), normalizes the vertical axis values to be between 0.and 100-percent.
Defining lagi to be the time that Myi(s) reaches 50-percent of the ultimate
discharge, Uy, normalizes the horizontal axis to be time in percent of lag.

Figure 3 shows some resulting S-graphs, noted as Syi(s) for storm class <Ey>.
The several 5-graphs can now be identified by characteristics parameters. A
convenient parameter to use is the linear scaling Y between the enveloping
curves of the S-graph data set. Usually, two of the S-graphs will bound the
entire set (see Fig. 4). By identifying an average Y values to each S-graph,
each S-graph is represented for storm i, by Y! where

Soi(s) = YiSA(s) + (1-YD) 85(s) (27)

where SJ(s) and S2(s) are the enveloping S-graphs; and Yi is the scaling
parameter with0 S Yi S 1.

Based on the above normalization and parameterizations, each summation
graph, M,i(s), is identified by the parameter set Pyl = {lagi, Uy, Yi}.
Consequently, each realization, noi(s), is identified by the vector Pol, fori =
1,2, 1ng.

The components of the parameter sets can be considered as random variables
which are all mutually dependent. The marginal distributions are
developed by plotting frequency-distributions of each component in the
parameters set (see Fig. 5.).
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Based on the marginal distributions, the frequency estimate associated to
vector, Py, is given by Pr(P,i) where

Pr(Pol) = Pr(lagi, Uy}, Yi) (28)

Should more identifying characteristics be used to describe the Myi(s), Eq. (27)
is immediately extended. However, there should be sufficient storms in

<€q> to develop a reliable frequency-distribution for each identifying
characteristic. From the above, the distribution [n(s)], of realizations, ni(s), is
developed for storm class, <€5>, using Eq. (28).

Each realization ngi(s) associated to class <Eq> represents the relationship
between the effective rainfall data and the stream gauge data, using the
stochastic integral equation, Q1i(t).

Hydrologic Modeling Predictive Relationships

Given a design (i.e., future) storm effective rainfall distribution to be applied
at the rain gauge site, eg2(t), the hydrologic model is used to predict a runoff
response from R, as could be measured at the stream gauge.

Let egD(t) € <€>.

Then the runoff response is the stochastic process, [Q1P(t)], where
t

[Q1PM] = f epD(t-s) [n(s)]o ds @9)
s=0

where brackets indicate a random process. [Q1P(t)] is the stochastic process of
runoff hydrographs which are possible outcomes associated to the design

storm effective rainfall, e;D(t), measured at the rain gauge site. [n(s)], is the
stochastic process of realizations associated to storm class <E,> where egD(t) is
considered to be sufficiently similar to the elements in <€5>. Because Eq. (29)

is a prediction, any of the realizations of [n(s)],, and hence [QiP(t)], are
candidates as probable outcomes.

At the stream gauge, we are usually interested in the probable value of some
criterion variable which would occur for the future storm event. For
example the variation in flow rate estimates at storm time t, is given from
Eq. (29) by the random variable
to
{QID(to)} = I egD(to -35) [n(s)), ds (30)

s=0
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2tting tp be the time of the peak flow rate (where tp is a function of the

random process, [n(s)]o), the probability distribution of peak flow rate, [qpl, is
given by the random variable distribution
fp
[gp} = [Q1P(tp)] = ] egP{tp- ) [n(s)), ds BD
s=0

Figure 6 shows the distributions of {qp] for a hypothetical storm event and an
actual catchment. The frequency distribution of {qp] in Fig. 6 is determined by
evaluating Eq. (31) using the marginal distrigutions shown in Fig. 5,
according to the mutually dependent probability of occurrence given by Eq.

(28). By scanning the entire set of [n(s)], realizations developed for storm
class <€o>, the qp frequency distribution is constructed, in histogram form.

C ESTIMATION UNCERTAINTY IN RAINFALL-RUNOFF
MODELING ESTIMATES

Due to the nondeterministic nature of the rainfall-runoff processes occurring
over the catchment, the mathematical descriptions of these processes result
in stochastic equations. Additionally, the so-called deterministic rainfall-
runoff models used to describe the several physical processes contain
parameters or coefficients which have well-defined physically-based
meanings, but whose exact values are unknown. The boundary conditions
of the problem itself are unknown (e.g., the temporal and spatial distribution
of rainfall over the catchment for the storm event under study and also for
all prior storm events) and often exhibit considerable variations with respect
"+ the assumed boundary conditions and the measured rainfall at a single

«ation (e.g., Nash and Sutcliffe, 1970; Huff, 1970). Thus the physically-based
parameters and coefficients, and also the problem boundary conditions, are
not the assumed values but are instead random variables and stochastic
processes whose process variations about the assumed values are governed
by certain probability distributions.

In the following, the uncertainty problem is addressed by providing a
methodology which can be incorporated into almost all rainfall-runoff
models. The methodology is based upon the standard theory of stochastic
integral equations which has been successfully applied to several problems in
the life science and chemical engineering (e.g., Tsokos and Padgett, 1974,
provide a thorough development). The stochastic integral formulation is
used to represent the total error between a record of measured rainfall-runoff
data and the model estimates, and provides an answer to the question:
"based upon the historic rainfall-runoff data record and the model's accuracy
in estimating the measured runoff, what is the distribution of probable
values of the subject criterion variable given a hypothetical rainfall event?"
Using the analysis results (Hromadka, 1989), we now extend our findings in
order to generalize the analysis to arbitrary rainfall-runoff model structures.
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. aost all rainfall-runoff models in use today involve the subdivision of
the catchment into smaller areas, linked together by a system of channel
links. These "link-nodes” hydrologic models represent the flow processes
within the channel links by a translation (moving in time) and an
attenuation (reduction of the maximum or peak flow rate) of the inflow
hydrograph. The runoff in each subarea is based upon the available rainfall
data, modified according to an assumed "loss rate” due to soil-infiltration,
ponding, evaporation, and other effects. The net effect of all these
approximations is to result in a vast spectrum of possible modeling
structures. Using the model structure presented in Hromadka, (1989), we can
mathematically approximate may of these rainfall-runoff models with a
single model structure, and can proceed to evaluate rainfall-runoff model
uncertainty in overall generality. The approach used in this paper is to
isolate the uncertainty in runoff predictions from the expected value of the
model of the model runoff estimate, and then attempt to analyze the
uncertainty as a separate form of information. In this way, the uncertainty
may be analyzed as a stochastic process. Once the underlying distributions
are identified, they can be normalized with respect to certain catchment
characteristic variables, so that these distributions can be rescaled for
application at arbitrary study sizes.

Rainfall-Runoff Model Frrors

Let M be a deterministic rainfall-runoff model which transforms rainfall data
for some storm event, i, noted by Pg'(t), into an estimate of runoff, Mi(t),

M: Pgi(t) — Mi(t) (32)

stere t is time. In our problem, rainfall data are obtained from a single rain
gauge. The operator M may include loss rate and flow routing parameters,
memory of prior storm event effects, and other factors. It is noted that
precipitation data are now used in the current analysis rather than using a
measured effective rainfall such as employed in Hromadka (1989).

Let Pyi(t) be the rainfall measured from storm event i, and Qi) be the
runof? measured at the stream gauge. Various error (or uncertainty) terms
are now defined such that for arbitrary storm event i,

Qgl(B) = Mi(®) + Ei(t) + E4i(Y) + Efi(1) (33)
where

Eml(t) is the modeling error due to inaccurate approximations of the
physical processes (spatially and temporally);

Egi(t) is the error in data measurements of Pgi(t) and Qg'(t) (which is
assumed hereafter to be of negligible significance in the analysis;
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E/i(t) is the remaining "inexplainable" error, such as due.to the

unknown variation of effective rainfall {i.e., rainfall less losses;
rainfall excess) over the catchment, among other factors.

Let Ei(t) be redefined to equal the total error
Ei(t) = Emi(t) + Eqi(t) + E(t) (34)

where Ei(t) is necessarily highly correlated to E{i(t) due to the given
assumptions. Because EMt) depends on the model M used in Eq. (32), then
Egs. {33) and (34) are combined as :

Qi) = Mi(V + Epi) . (35)
where Epi(t) is a conditional notation for Ei(t), given model type M.

The several terms in Eq. (35) are each a realization of a stochastic process.
And for a future storm event D, the EMP(1) is not known precisely, but
rather is an unknown realization of a stochastic process distributed as
[EpmP(8)] where

[OMPM1 = MPG®) + (EMPW] (36

In Eq. (36), [QMP(1)] and [EMP(1)] are the stochastic processes associated to the
catchment runoff and total modeling error, respectively, associated with
model M, for hypothetical storm event D. Hence in prediction, the model
output of Eq. (36) is not a single outcome, but instead is a stochastic
distribution of outcomes, distributed as [QMP(t)]. Should A be some
functional operator on the possible outcome (e.g., detention basin volume;
peak flow rate; median flow velocity, etc.) of storm event D, then the possible
value of A for event D, noted as AyD, is a random variable distributed as
[AmD], where

(AMP] =A [QuP®)] (37)

Developing Distributions for Model Estimates

The distribution for [EpmP(t)] may be estimated by using the available
sampling of realizations of the various stochastic processes:

(Emi)] = (Qgitt) - M), = 1,2, (38)

Assuming elements in {Emi(t)} to be dependent upon the "severity” of Qgi(t),
one may partition {Ep(t)} into classes of storms such as mild, major, flood,
or others, should ample rainfall-runoff data be available to develop
significant distributions for the resulting subclasses. To simplify
development purposes, [EMP(t)] will be based on the entire set {Epi(0)} with
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the underlying assumption that all storms are of "equivalent" error; storm
classes will be used later.

The second assumption involved is to assume each Emi(t) is strongly
correlated to some function of precipitation, Fi(t) = F(Pg’(t)) where F is an
operator which includes parameters, memory of prior rainfall, and other
factors. Assuming that Emi(t;) depends only on the values of Fi(t) for time t
< to, then EpMi(D) is expressed as a causal linear filter (for only mild conditions
imposed on Fi(t)), given by the stochastic integral equation (see Tsokos and
Padgett, 1974)

t
Emilty) = [ Fi(ty - 5} hpgi(s) ds (39)
s=(0

where hpi(t) is the transfer function between (Epmi(t), Fi(t)). Other
convenient candidates to be used in Eq. (39), instead of Fi(t), are the storm
rainfali, Pg*(t) and the model estimates itself, Mi{t).

Given a significant set of storm data, an underlying distribution, {hm(D)] of
the {hpi(D} may be identified, or the {hymi(t)] may be used directly as in the
case of having a discrete distribution of equally-likely realizations. Using
fhp(t)] as notation for both cases of distribution stated above, the predicted
response from M for future storm event D is estimated to be

[OMP(H)] = MD(t) + [EMP(1)] (40)
Combining Eqs. (39) and (40),
'
[OMP(D)] = MD(t) + f FD(t-s) [hpg(s)] ds {41)
5=0
and for the functional operator, A , Eq. (37) is rewritten as
t
{AMP] = A [QMP® = 4 (MD(D) + f FD(t-s) [ha(s)] ds) (42)
s=0

Confidence interval estimates for the chosen criterion variable can now be
obtained from the frequency-distribution, [AMP]. It is noted that [AmP] is
necessarily a random variable distribution that depends on the model
structure, M.
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Development of Total Error Distribution
A translation unsteady flow routing rainfall-runoff model

The previous concepts are now utilized to directly develop the total error
distributions, [Epm(t)], for a set of three idealized catchment responses. Besides
providing a set of applications, additional notation and concepts are
introduced, leading to the introduction of storm classes.

Let F be a functional which operates on rainfall data, Pgi(t), to produce the
realization, Fi(t), for storm i by

F: Pglit)— Fi(t) 43)

The catchment R is subdivided into m homogeneous subareas, R = U Ry, (see
Fig. 7; where, m = 9), such that in each R;, the effectlve rainfall, eji(t), is
assumed given by

(D) = A4(1 + XD Fi() (44)

where A is a constant proportion factor; and where Xjt is a sample of a
random variable, which is constant for storm event i. The parameter &; is
defined for subarea Rj and represents the relative runoff response of Rjin
comparison to Fi(t), and is a constant for all storms, whereas Xjl is a sample
of the random variable distributed as {X;], where the set of distributions, {[XjL;
j=1,2,~,m} may be mutually dependent.

The subarea runoff is
1

t
qjit) = I eji(t-s) ¢ji(s) ds =] A1 + X1 Fit-s) ¢'(s) ds (45)

=0 s=0

At this stage of development, unsteady flow routing along channel links (see
Fig. 7) is assumed to be pure translation. Thus, each channel link, Ly, has the
constant translation time, Tx. Hence from Fig. 7, the total runoff response at
the stream gauge for storm event i, Qi(t), is the sum of associated link travel
times:

9
Qgitt) = Y gjitt- 1 @s)
=1

where gji(t - ;) is defined to be zero for negative arguments; and tj is the sum
of link travel times (e.g., from Fig. 7, 11 =T1 + T2 + T3; 16 = T5 + T 19 = 0).
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For the above particular assumptions,

g t
Qgit) = Z ] A1 + Xji) Filt - 5) ¢ji(s - 1 ds

=1 Js=0

t g
=f Fi(t - 5) ( z li(l + in) ¢ji(s - ’tj) ) ds (47)
s={) j=1

In the final form, the runoff response for the given simplification is

t 9
Qgi(t) = f Fi(t-3s) Y, Ajoii(s- 1) ds
: = |

=0

t g
+ f Fi(t-s) Z A x;iq;,-i(s - ti) ds (48)
5=0 j=1

In the above equations, the samples {in} are unknown to the modeler for
any storm event i. From Eq. (48), the model structure, M, used in design
practice is

t 9
Mi(t) = j Fi(t - 5) 2 ?\.j ¢fi(s - ‘tj) ds 49
s=0 =1
Then, Qgi(t) = Mi(t) + Em¥(t) where
t
Epmi(t) =I Fi(t - s) hpmifs) ds (50)
5=0

where hyi(s) follows directly from Eqs. (48) and (49).

Should the subarea UH all be assumed fixed, (i.e., q)ii(t) = ¢;(t), for all i), as is
assumed in practice, then the above equations can be further simplified as

t
Mi(t) = J Fi(t - 5) ®(s) ds (51)
s=0

9

where ®(s) = Z lj cpj(s - 1:]-). Additionally, the distribution of the stochastic
=1

process [hpm(t)] is readily determined for this simple example,

9
[hm®1 =Y, X} Aj4it- 52)
j=1
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where [hm{t)] is directly equated to the 9 random variables, Xj=12-9) 1t
is again noted that the random variables, Xj, may be all mutually dependent.

In prediction, the estimated runoff hydrograph is the distribution [QumMP(1)]
where [QuP(H)] = MP(t) + (EMP(1)], and M refers to the model structure of Egs.
(49) or (51).

For the example problem, the stochastic integral formulation is
t t
[QMP®) = j FD(t - 5) ®(s) ds + [ FD(t - 5) [hpm(s)] ds (53)
s=0 . s=0

where the error distribution, {EpmDP(D)], is assumed to be correlated to the
model input, FP(t), as provided in Egs. (50) ard (52).

Multilinear unsteady flow routing and storm classes

The above application is now extended to include the additional assumption
that the channel link travel times are strongly correlated to some set of
characteristic descriptions of the runoff hydrograph being routed, such as
some weighted mean flow rate of the associated hydrograph. For example,
the widely used Convex Routing technique (Mockus, 1972) often utilized the
85-percentile of all flows in excess of one-half of the peak flow rate as a
statistic used to estimate the routing parameters. But by the previous
development (i.e., definition of e(t)), all runoff hydrographs in the link-
node channel system would be highly correlated to an equivalent weighting

of the model input, Fi{t}. Hence, storm classes [£;], of "equivalent” Fi(t)

realizations could be defined where all elements of [§;] have the same
characteristic parameter set, C{Fi()), by

[&,1 = {Fit) | CEW® = 2} (54)

And for all Fi(t) e [E;), each respective channel link trave! time is identical,
that is Ty = Ty, for all Fi(t) € [£,). In the above definition of storm class, z is a

characteristic parameter set in vector form. (An example of such a
characteristic parameter set is given in a subsequent section.)

This extension of the transiation unsteady flow routing algorithm to a
multilinear formulation (involving a set of link translation times) modifies
the previous runoff equations (51) and (52) to be, in general

t

t
Mi(t) = f Fi(t-5) z Aj ¢ifs-1D) ds =f Fi{t-s) @,(s) ds; Fi(t) € [E,] (55)
5=0) ] 5=0



Environmental Modeling — Vol ] 263

where ®5(s) = Y, Aj i(s-13), and
i

t
Epmi(t) = I Fi(t-s) hy,i(s) ds; Fi(b) e (§,] (56}
s=0

The structure of the new set of equations motivates an obvious extension of
the definition of the subarea UH, the subarea &; proportion factor, and the
subarea random variable distribution [X;], to all be also defined on the storm

class basis of {§z1. Thus, Eq. (55) is extended as

t
Mi(t) = j Fi(t-s) Z A ¢,"{s-tiz) ds
s={ ]

t
= [ Fi(t-s) ®,(s) ds; Fi(t) € [Ez]) (57)
s=0

The stochastic process {hm,(t})] is distributed as
(a0 = ¥, DG AR ¢%s - 125 FilD) € [, (58)
]

And in prediction,

[QMPM] = MD(t) + (EmPD]; FRWO € [Ep) {59)
where
t
(EpmP(D] = f FO(t - s) (hp(s)] ds; FP(1) € [Ep] (60)
s=0)

A Multilinear Rainfall-Runoff Moedel

The previous two model derivations resulted in the development of the
total error distribution, [Epm(1)), for some particular model structures. In this
section, the above results are generalized to include a wide range of
possibilities.

As before, Let F be a functional defined on the assumed rainfall data, F :
Pgi{t) —= Fi(t). The catchment R is subdivided into m subareas, (Rj;
j=1,2,~,m} linked together by unsteady flow routing models. The link-node
model drains freely to the single stream gauge where the data, Qg‘(t), is
measured. The problem is to predict the runoff response at the stream gauge
corresponding to a hypothetical storm event rainfall, PgP(t).
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Each subarea's effective rainfall, eji(t), is now defined to be the sum of
proportions of Fi(t) translates by

eji(t) = Ek; A1 + Xkl Filt - 8jx); Fi(t) € (6] (61)

where Xjki and B,-ki are samples of the random variables distributed as [ X
and [Biki], respectively. In the above equation and all equations that follow, it

is assumed that a storm class system is defined, [§;], such that Fi(t) € [£,], all
parameters and probabilistic distributions are uniquely defined, and there is
no loss in understanding by .omitting the additional notation needed to
indicate the storm ciass. ‘

The subarea runoff is

qi‘(t) = 2 Ak(1 + Xiki) Fi(t - Biki - 5); ¢j(s) ds {62)
k
$=(

or in a simpler form,

t
gl = j Fitt - 5) 3 A (1 + XjecD) ¢js - i) ds 63)
s=0 k

It is assumed that the unsteady flow channel routing effects are highly
correlated to the magnitude of runoff in each channel link, which is
additionally correlated to the magnitude of the model input realization, F(t).
On a storm class basis, each channel link is assumed to respond linearly in
that (e.g., Doyle et al 1983)

O1itt) = ) asliite - o) (64)
I'4

where O1i(t) and I1i(t) are the outflow and inflow hydrographs for link 1, and

storm event i; and (a4 and {4 are constants which are defined on a storm
class basis which is also used for the model input, Fi(t). Thus, the channel
link flow routing algorithm is multilinear with routing parameters defined
according to the storm class, [€;] (see Becker and Kundezewicz, 1987, for an
analogy based on multilinear approximation of nonlinear routing).

For L links, each with their own respective stream gauge routing data, the
above linear routing techniques result in the outflow hydrograph for link
number L, OL(t), being given by
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n N m ny
OO =2 aq 3 aqy " 2, 26 2, a4 hit-0n - ag —aq -og)  (65)
4=1  4a=1 b=1  4=1
Using an index notation, the above OL(t) is written as
Ol = 3, acs Iift - oess) (66)
<>

For subarea R;, the runoff hydrograph for storm i, qj{t), flows through L;
links before arriving at the stream gauge and contributing to the total
modeled runoff hydrograph, Mi(t). All of the parameters ai.s and wics are
constants on a storm class basis. Consequently from the linearity of the
routing technique, the m-subarea link node model is given by the sum of the
m, qi‘(t) contributions,

Mi(t) = 2 Zai-:bj C{ii(l‘ - (Ii<l>j) (67}
<J$i

=

Finally, the predicted runoff response for storm event D is the stochastic
integral formulation

t m

[OmPW] = J FP(t-5) ( > Eaicbi D A1+ (XGxD) ¢jts - (Bt
s=0 U<y k

- O'-i(b")) ds; FD(t) € [éDl

Given Fi(t) e [£;], all subarea runoff parameters {Ajk, ¢;(1)) and distributions
[{Xjk], [9;;(}} are uniquely defined for j=1,2,-m; and all link routing
parameters {as; o} are also uniquely defined. Then the entire link-node

model is linear on a storm class basis and once more Egs . (57)-(60) apply
without modification.

The above multilinear rainfall-runoff model structure represents a highly
detailed and distributed parameter model of the rainfall-runoff process
which not only can be used to represent the catchment runoff response itself,
but also can be used to appropriate the response of other hydrologic
modeling structures.

Consequently, our final model structure can be used to study the effect on the
runoff prediction (at the stream gauge) from arbitrary model M, due to the
randomness exhibited by the mutually dependent set of random variables,
{Xik, Bik}. Hence for any operator, A, on the predicted runoff response of Eq.
(68), the outcome of A for storm event PyP(t) is the distribution [ApP], where
for all model parameters defined,

[AMD] = A [AMD(O] = A (X}, 18D (69)
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Stochastic Integral Equations and Uncertainty Estimates

The distributed parameter rainfall-runoff model of Eq. (68) provides a useful
approximation of almost any rainfall-runoff model in use today. A
stochastic integral equation that is equivalent to Eq. (68) is

t

fQMP(] = I FD(t - 5) [n(s)] ds; FO(D) e [Ep) (70)
s=0

where now [n(s)] is the distribution of the stochastic process representing the
random variations from the set of mutually dependent random variables,

{Xjk, 8jk}, defined on a storm class basis. (It is recalled that on a storm class
basis, the hydraulic parameters of acs; and <ty and the ¢j(s), do not vary.)
In prediction, the expected runoff estimate for storm events that are

elements of [Ep] is
t

EIQMP(®)] =[ FP(t - s) Eln(s)l ds; FP(B) € Ep] 71
s=0

which is a multilinear version of the well-known unit hydrograph method
(e.g., Hromadka et al, 1987), which is perhaps the most widely used rainfall-
runoff modeling approach in use today.

Then the model M structure of Eq. (68), when unbiased, is given from Eq.
(71), by

MBP(t) = E[QmP(1)] (72)

The total error distribution (for the subject model M) can be developed by

[EmPO] = [QmPE] - EIQMP®)] (73)

where all equations are defined on the storm class basis used in the previous
equations. Given sufficient rainfall-runoff data, the total error distribution
can be approximately developed by use of Eq. (73). Should another rainfall-
runoff model structure be used, then E[QMP(t)] is replaced by the alternative
model, and another set of realizations of [EpmP(t)] is obtained from (73).
Equation (73} is important in that given a specified model, the total error in
model estimation is approximately given by a stochastic process. And
similar to any sampling process, the modeling total error distribution
becomes better defined as the sampling population increases. Through the
equivalence between Egs. (68) and (70), the uncertainty of the rainfall-runoff
model of Eq. (68) can be evaluated by use of Eq. (70). That is, due to the
limited data available, one cannot evaluate each of the random variables and
processes utilized in Eq. {68), but one can evaluate the total model error, as
developable from Eq. (73).
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D, APPLICATION OF THE STOCHASTIC INTEGRAL EQUATION

In our application problem, the model input functional F : Pgl(t) ~— Fi(t) is
specified as
F: Pgi(t) — AP,i(1) (74)

where X is a constant runoff coefficient. The corresponding stochastic

integral equation used to related rainfall-runoff data is
t

Qgi(t) = ;\-I Pgi(t - 8) Tli(S) ds (75}

5=

In this application, storm classes are defined (z) according to the 85-percentile
value of rainfall intensity in excess of one half of the maximum 5-minute
mean intensity, and also according to the total rainfall mass which occurs
within 3 days prior to the subject storm event. Storm classes are then
assembled according to the characteristic z-value, at ¢.5-inch increments.

For the study location of Southern California, Table 1 summarizes the study
catchment characteristics. Table 2 lists the available rain gauge sites and the
storm dates of events used in the rainfall-runoff data analysis. Because of the
sparcity of rainfall-runoff data, several catchments are considered in order to
regionalize the statistical results. All storms considered in Table 2 are
assumed to be elements of the same storm class considered important for
flood control. That is, it is hypothesized that the variations in the various
random variables and processes identified in Eq. (68), can be considered
samples from distributions that apply for each of the considered storm
events of Table 2.

For each storm event and catchment, the rainfall-runoff data is used to
directly develop the {ni(s}] by use of Eq. (75). On a catchment basis, the
several resulting mi(s) are pointwise averaged together to determine an
estimate for E[n(s)] for the prescribed storm class, for the considered
catchment.
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TABLE 1. WATERSHED CHARACTERISTICS

Wataershed Geometry Calibration Results™
Cength of Percent
Watershed Area Centroid  Skope impervious Tc Storm Peak F, lag  Basin
Name (mizl (mu} (mi) {fmi) (%) {hrs) Date (‘nhr)p (hrs)  Factor

Alhambra Wash! 1367 862 417 B24 45 0.8 Feb.78 ©.59, 024 062 0015
Mar, 78 0.35, 0.29

Feb.80  0.24
Compton2! 2466 1263 663 138 55 222 Fob.78 036 054 0015
Mar.78  0.29 °
Feb 80  0.44
Verdugo Wash1 26.8 1098 549 316.9 20 — Feb.78 _ 0.65 064 0.016
Lireklin? 10.3 777 341 2957 25 — Feh.78 027 073 0026
Feb.80 027
San Jose? 834 2300 85 600 18 Feb.78 020 166 0.20
Feb.80  0.39
Sepulveda? 152.0 190 9.0 1430 24 — _Fab,78 022,021 112 0017
Mar. 78  0.32
Feb.B0  0.42
Eaton Wash? 11024 814 341 909 40 1.05 — . — .05
(57%)
Rubio Wash! 12205 9.47 S511 1257 40 068 — —_— — 00157
{3%)
Arcadia Wash? 7708 587 303 1567 45 060 —— S — 0.0158
14%
Comptont! 1508 9.47 379 143 55 192 — — — 00158
Dominguez! 3730 1136 492 7.9 60 2.08  — —  — ogo1s8
Santa Ana Delhi* 176 871 417 160 40 173 — — —  0.053°
00400
Westminster® 67 565 139 13 40 — — — po7e®
0.04010
El Modgna-lrvine®  11.9  6.34  2.69 52 A0 0.78 —— — — p.o28
Garden Grove- 208 1174 473 10.86 64 1.98 -— _— [ JE—

Wintersburg !
San Diego Creek! 368 142 852 950 20 139 — —_ —_ —

Notes 1: Watershed Geometry based on review of quadrangle maps and LACFCD storm drain maps.

2: Watershed Geometry based on COE LACDA Study.

3: Watershed Gepometry based on COE Reconstitution Study tor Santa Ana Delhi and Westminster
Channels (June, 1983].

4: Area reduced 57% due to several debris basins and Eaton Wash Dam reservoir, and groundwater
recharge ponds.

5: Area reduced 3% due to debris basin.

6: Area reduced 14% due to saveral debris basins,

7: 0.013 basin factor reported by COE (subarea characteristics, June, 1984).

8: 0.015 basin factor assumed due to similar watershed values of 0.015.

g: Average basin factor computed from reconstitution studies,

10: COE recommended basin factar for flood flows.

11: COE = U.S. Army Corps of Engineers

12: LACDA = Los Angeles County Drainage Area Study by COE.

13: LACFCD = Los Angeles County Flood Control District.
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TABLE 2. PRECIPITATION GAUGES USED IN.
LOS ANGELES COUNTY FLOOD

RECONSTITUTIONS
LACFCD
Stream Gauge Storm Rain Gauge

— logon | Reconsthtion No,
Alhanmbra Wash near Feb 78 191, 303, 11148
Kiingerman Street Mar 78 191, 303, 1114

Feb 80 191B, 235, 280C, 1014
Compton Creek near Feb 78 116, 291
Greenleaf Drive Mar 78 116, 291

Feb 80 116, 291, 716
Limekiln Creek above Feb 78 57A, 446
Aliso Creek Feb 80 259, 446
San Jose Creek Channel Feb 78 92, 1078, 1088X
above Worliman Mill Road Feb 80 96CE, 347E, 1088
Sepulveda Dam (infiow) Feb 78 57A, 292DE, 446, 735H

Mar 78 57A, 435, 762

Feb 80 292, 446, 735
Verdugo Wash at Estelle Avenue Feb78 280C, 373C, 498, 758

o, SiationName L . long Bev.  Tvpe
Lo57A Camy Hi Hilt (OPIDS) 34-15-18 118-05-41 4240 SR
L0092 Claremont-Pomona College 34-05-48 117-42-33 1185 SR
10096CE  Puddingstone Dam 34-05-31 117-48-24 1030 SR
Lo118 Inglewood Fire Station 33-47-53 118-21-22 153 SR
L0191(B) Los Angeles-Alcazar 34-03-46 118-11-54 400 SR
L0235 Henninger Flats 43-11-38 118-05-17 2550 SR
L0259 Chatworth-Twin Lakes 34-16-43 118-35-41 1275 SR
LO280C Sacred Heart Academy 34-10-54 t18-11-08 1600 A
L0291 Los Angeles-86th & Centrai 33-56-56 118-15-17 121 R
L.0292(DE} Encino Resenvoir 34-08-56 118-30-57 1075 SR
10303 Pasadena-Cat Tech 34-08-14 118-07-25 800 SR
L034T7E Baldwin Park-Exp. Station 34-05-56 118-57-40 384 SR
L0373C  Briggs Terrace 34-14-17  118-13-27 2200 SR
L3435 Monte Nido 34-04-41 118-41-35 600 SR
L0446 Aliso Canyon-Oat Canyen 34-18-53 118-33-25 2367 SR
L0498 Angeles Coast Hwy-Drk Cny Tr 34-15-21 118-11-45 2800 R
10716 Los Angeles-Oucommun Street 34-03-09 118-14-13 306 SR
LO735(H} Bell Canyon 34-11-40 118-39-23 895 R
L0758 Griffith Park-Lower Spr Cyn 34-08-02 118-17-27 600 R
L0762 Upperstone Canyon 34-07-27 118-27-15 943 R
L1014 Ric Hondo Spreading 33-59-57 118-06-04 170 SR
£1078 Covina-Griffith 34-04-10 117-50-47 975 SR
1.088(X) LaHabra His-Mut Water Co 33-56-55 117-57-51 445 SR
L1114(8) Whittier Narrows Dam 34-01-29 118-05-02 239 SR
S = Standard 8" raingauge {non-recording).
R = Recording raingauge.
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Summation {or distribution) graphs of the (ni(s)} indicate that normalizing
could be performed by plotting mass along the y-axis from 0 to 100-percent of
mass, and the x-axis as time with respect to the parameter “lag” where 100
percent of the lag equals the time at 50 percent of total mass. Plots of
normalized summation graphs of the ni(s) realizations for Athambra Wash,
for several storms, are shown in Fig. 7, and plots of summation graphs of the
estimates of E{n(s)] for the several catchments are shown in Fig. 8. From the
data used in Fig. 7, the expected value (for the Alhambra Wash stream gauge)
of the characteristic parameters lag and ultimate discharge, U, are obtained.

A comparison between Figs. 7 and B shows that the variation in the
summation graphs of the E[n(s)] among the several considered catchments is
of a magnitude similar to the variation between the summation graphs of
1(s) for Alhambra Wash alone. Therefore in order to regionalize the total
error distributions, and to increase the population of the random process
sampling, the variations among all the catchment, ni(s) summation graph
realizations are normalized and assembled together to form one regionalized
distribution of summation graph realizations.

To describe the data, a "shape” scaling parameter, Y, is introduced by plotting
each summation graph realization on Fig. 9 and averaging the upper and
lower reading for Y. The regionalized marginal distribution for the
parameter Y is shown in Fig. 10. With the normalization process, the
variations in the timing parameter, lag!, and the summation graph total
mass (i.e., ultimate discharge, Ul), must be also accounted, and were assumed
to be distributed according to the sampled frequency-distributions.

From these descriptor variables, each mi(s) is represented, in
summation graph form, by the parameter values of (lag!, U, Yi ).

Based upon the model M defined by Eqs.  (72)-(75), a severe storm, of March
1, 1983 (which was not used in the development of [n(s)] is analyzed for the
Alhambra Wash stream gauge. The outcomes of [QyP(1)] are plotted along
with the recorded stream gauge data in Fig. 11. From the figure, the
uncertainty in the model prediction of [QMP(t)] is significant, and should be
included when analyzing an operator A on the runoff predictions.

If the underlying distribution between the variables in {Y, lag, mass) could be
ascertained, the distribution of [n(s}] could be identified (associated to F}. One
simple approach is to assume each of the variables to be independent, and to
generate [QmDP(1)] by probabilistic modeling.
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Figure 1. Probable Runoff Hydrographs, using Model M1,
for a Hypothetical Storm Event.



274  Environmental Modeling — Vol. IH

Discussion and Conclusions

In the use of the above rainfall-runoff model, MP(t) is given by

t
MD() = E[QMP(t)] = A J PgD(t - 5) Eln(s)] ds (76)
s=0
The model uncertainty is then evaluated from Eq. (73) by
t
EmP(t) =2 f (PgP(t - s)) [n(s)} - Eln(s)]) ds @7
s=0

where from Eq. (60),
[hm(s)] = [n(s)] - Elnis)] (78)

Hence it is seen that the distribution of [0 (s)] includes the effects of both the
rainfall-runoff mode!l itself and the associated uncertainty, where from Egs.
(68) and (70),

i1}

EmG) =2, 2 ales; 2 Ak (1+E [XkD) ¢j(s-B)Bjid - o)
1 A K

for FD{t) € [&D] (79)

The various stochastic distributions utilized are estimated from regional
rainfall-runoff data and the chosen model structure. Because runoff data are
available for the precise catchment point under study (i.e.,, we have a stream
gauge), the various distributions represented by Figs. 7 through 11 can be
rescaled to correspond to the selected study point (because from the stream
gauge data being studied, we can estimate the expected value for lag and
ultimate discharge). However, in order to utilize these distributions at
ungauged points in the catchment, or at other catchments where there are no
runoff data, a method of transferring these distributions is needed. That is, a
method is needed for estimating the expected values for lag and ultimate
discharge (or other description variables used) for the point under study.
Given these estimates, the various distributions can be rescaled, and a

distribution [1(s)] can be estimated from the rainfall-runoff data pool.
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