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THE CENTRAL LIMIT THEOREM

In floodplain management, an underlying technology is the study of
statistics. The estimation of 2-year, 10-year, 100-year and other return
frequency peak flow rates are simply applications of well-known statistical
concepts. An important fact is if a simple random sample of size n is drawn
from a population with mean u and variance o2, then the sample mean Xp
has approximately a normal distribution with mean p and variance c2/n.
That is the distribution function of
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is approximately a standard normal. The approximation improves as the
sample size increases.

In the above theorem, if the sample were drawn from a population
that is in fact a normal distribution, then Equation (1) is exact, and

Xn-l =7 2)
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where Z is the standard normal distribution with mean p = 0 and standard
deviation ¢ = 1.

Let's see how the Central Limit Theorem applies when we are dealing
with a non-normal population.

Example 1.

Samples of size n are drawn from a population having the probability
density function
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(This is the probability density function from an exponential distribution
with mean p =10, and ¢ = 10). The sample mean was computed for each
sample. The relative frequency histogram of these mean values for 1000
samples of size n = 5 is shown in Figure 1. Figures 2 and 3 show similar
results for 1000 samples, but of size n = 25 and n = 100, respectively. Although
all the relative frequency histograms are nearly bell shape, the tendency
toward a symmetric normal curve is better for larger n. Also note in Figures
1-3 that the spread of frequency histograms diminishes for larger sample sizes
n. A smooth curve drawn through the bar graph of Figure 3 would be nearly
the graph of a normal density function with mean 10 and variance (10)2/100 =
1.

The Central Limit Theorem provides a very useful result for statistical
inference, for we now know not only that X;, has mean p and variance 62/n if
the population has mean p and variance 62, but we know also that the
probability distribution of Xn is approximately normal. For example, suppose
we wish to find an interval (a,b) such that

Pla <X, <b) =0.95 (3)

This probability is equivalent to
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for given values of p and ¢. Since (Xn - p)/(c/+) has approximately a
standard normal distribution, the above equality can be approximated by

P(a"u <z <

<7< = (.95 5
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where Z has a standard normal distribution. From probability tables,

P(-196< Z<1.96)=0.95 6



and hence

a-u b-u
=-196 ——— =196
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or in a more useful form,
a=n-1966/vi  b=u+ 1960/ (8)

In flood frequency analysis, the usual procedure is to identify the
largest peak flow rate Q; for each year i, respectively. Next, the logarithm of
each Q; is computed giving qi = logQj. Now, for n years (of zero) runoff data,
we have n values of gj. The mean of the set of values {q;} is the estimate of
the log of the 2-year return frequency peak flow rate. Additionally, the g;
frequency histogram typically closely approximates a normal distribution; i.e.,
a log-normal distribution.

THE SAMPLING DISTRIBUTION OF S2

Indeed, the beauty of the Central Limit Theorem lies in the fact that Xn
will have approximately a normal sampling distribution no matter what the
shape of the probabilistic model for the population, so long as n is large and c?
is finite. For many other statistics additional assumptions are needed before
useful sampling distributions can be derived.

First note that if Xj,....,.Xp are independent normally distributed random
variables with common mean p and variance o2, then Xn will be precisely
normally distributed with mean p and variance 62/n. No approximating
distribution is needed in this case since linear functions of independent
normal random variables are again normal.

Under this normality assumption for the population, a sampling
distribution can be derived for S2, but we do not present the derivation here.
It turns out that (n - 1)S2/62 has a sampling distribution that is a special case
of the gamma density function. If we let (n - 1)S2/62 = u, then u will have the

probability density function given by
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The gamma density function with a =v/2 and B = 2 is called a chi-square
density function with parameter v. The parameter v is commonly known as the
degrees of freedom. Thus when the sampled population is normal , (n - 1)$2/02
has a chi-square distribution with n — 1 degrees of freedom.
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Definition: An estimator 6 is unbiased for estimating 6 if E (8) = 0

In studying sampling frequency histograms, we saw that the values of
Xn tend to center at y, the true population mean, when random samples are
selected from the same population repeatedly. Similarly values of $2 centered
at 62, the true population variance. These are demonstrations of the fact that
X, is an unbiased estimator of y1 and 52 is an unbiased estimator of ¢Z.

For an unbiased estimator 8 the sampling distribution of the estimator

has mean value 6. How do we want the possible values of 8 to spread out to
either side of 6 for this unbiased estimator? Intuitively it would be desirable
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for all possible values of 8 to be very close to 6. That is, we want the variance
of 6 to be as small as possible. It is possible to prove that some of our
commonly used estimators do indeed have the smallest variance among all
unbiased estimators. We will use this variance criterion for comparing
estimators. That is, if 87 and 87 are both unbiased estimators of 0, then we
would choose as the better estimator the one possessing the smaller variance.



GENERAL DISTRIBUTION: LARGE-SAMPLE CONFIDENCE INTERVAL
FOR

Suppose we are interested in estimating a mean p for a population
with variance ¢2, assumed, for the moment, to be known. We select a
random sample X1,..Xn from this population and compute Xn as a point
estimator of p. If n is large (say, n 2 30 as a rule of thumb), then Xn has
approximately a normal distribution with mean p and variance 62/n. From
these facts we can state that the interval (i - 26/¥#, & + 26/47) contains about
95% of the Xp values that could be generated in repeated random samplings
from the population under study. For convenience let's call this middle 95%
the "likely" values of X,. Now suppose we are to observe a single sample
producing a single X,. A question of interest is "What possible values for p
would allow this X;, to lie in the likely range of possible sample means?" This
set of possible values for p is the confidence interval with confidence
coefficient of approximately 0.95.

The main idea of confidence interval construction is shown on Figure

More formally, under these conditions
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has a standard normal distribution, approximately. Now for any prescribed o
we can find from probability tables a value zg/7 such that

Pl-zg/a€Z<+zg0l=1-0 (10)



Rewriting this probability statement, we have
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The interval

(Xn‘za/z%:xn+za/2%)
forms a realization of a large-sample confidence interval for p with

confidence coefficient approximately (1 - o).

It is of interest to consider the peak flow rate data we are given for a
flood frequency analysis. Unlike a simple random sample, our peak flow data
are clustered together according to the time period we have gauged the
watercourse. Consequently, the sample typically may not demonstrate the
breadth of variability that the population truly has if there are background
cycles present in the weather patterns.

MODELS

In rainfall-runoff hydrology, we are aware of the hundreds of so-called
deterministic models, and of probabilistic or statistical models. We will
consider some practical concepts of both.

Figure 7 shows a possible set of responses for the same values of x
when we are using a probabilistic model. Note that the deterministic part of
the model (the straight line itself) is the same. Now, however, the inclusion
of a random error component allows the peak loads to vary from this line.
Since we believe that will vary randomly for a given value of x, the



probabilistic model provides a more realistic model of Y than does the
deterministic model.

General Form of Probabilistic Models

Y = deterministic component + random error

where Y is the random variable to be predicted. We will always assume that
the mean value of the random error equals zero. This is equivalent to
assuming that the mean value of Y, E(Y), equals the deterministic component
of the model:

E(Y) = deterministic component

Figure 8 considers the most primitive model, Y = constant, along with
the data available.

The Straight-Line Probabilistic Model

Y=Bo+B1x+¢

where Y dependent variable (variable to be modeled)
x = independent variable (variable used as a predictor of Y)

g = random error component (see Figure 10)

Bo = y intercept of the line, that is, point at which the line
intercepts or cuts through the y axis (see Figures 9, 11)

B1

slope of the line, that is, amount of increase (or decrease)

in the mean Y for every 1 unit increase in x (see Figure 9)



Note that we use the Greek symbols o and B3 to represent the Y
intercept and slope of the model, as we used the Greek symbol | to represent
the constant mean in the Model Y = u + €. In each case these symbols
represent population parameters with numerical values that will need to be
estimated using sample data. Consequently, B, and B1 are themselves
statistics, which have a distribution of outcomes that depend upon the
underlying population.

In order to make progress, some assumption is inserted into the
analysis regarding the character of the error between the data and the
deterministic model estimates. Usually, we will assume a normal
distribution.

Probability Distribution of the Random Error Component g

The error component is normally distributed with mean zero and
constant variance ¢2. The errors associated with different observations are

independent.

Sampling of Distribution of §1

If we assume that the error components are independent normal
random variables with mean zero and constant variance 62, the sampling

distribution of the least-squares estimate B1 of the slope will be normal, with
mean P (the true slope) and standard deviation

GB‘l =_g.....
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MODEL ERRORS

How good are our models? How well do the models estimate the T-
year peak flowrate? How well do our models fit the stream gauge data? The
following Figures 13 and 14 demonstrate these important concepts.
Remember: highly complex rainfall-runoff models have these difficulties;
are you aware of them?

Sampling Errors for the Estimator of the Mean of Y and the Predictor of an
Individual Y

1. The standard deviation of the sampling distribution of the
estimator ¥ of the mean value of Y at a fixed x is

(x - %)*
SSx
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where o is the standard deviation of the random error €.

2. The standard deviation of the prediction error for the predictor Y
of an individual Y value at a fixed x is

-~ (X'i)z
oy-Gy=0a/1+++—
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where ¢ is the standard deviation of the random error €.

The true value of ¢ will rarely be known. Thus we estimate ¢ by s and
calculate the estimation and prediction intervals as shown next.



A 100(1-q) Percent Confidence Interval for the Mean Value of Y at a Fixed x

¥ £ to/2(n - 2) (estimated standard deviation of ¥)

or

(x - X)?
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Y tto/o(n-2)s %+
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Figure 1. Relative Frequency Histogram for ¥ from 1000 Samples of Size n = 5.
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Figure 2. Relative Frequency Histogram for ¥ from 1000 Samples of Size n = 25.
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Figure 3. Relative Frequency Histogram for ¥ from 1000 Sampes of Size n = 100.
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Figure 5. Distributions of Two Unbiased Estimators, 61 and 6>, with
V(97) < V(87).
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Figure 6. The Construction of a Confidence Interval.
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Figure 7. Deterministic and Probabilistic Models.

Figure 8. The Probabilistic Model Y = +¢.
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Figure 11. Graph of the Model Y =, +&.
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Figure 14. Error of Predicting a Future Value of Y for a Given Value of x.
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Figure 15. A 95% Confidence Interval for Mean and a Prediction Interval for
Peak when x =90.
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Example 2

To calculate the standard error of a mean, you need the size of the
sample and its standard deviation:

N =10,000
S =102
X =1155
SEx =0.102
A S Obtained sample mean

1150 1 2 3 4 1155 6 q .8 9 1160
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Figure 17. Establishing a Confidence Interval at .95 Level of Confidence.
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Figure 18. Distributions of Individuals and of the Means of Samples of
Three Different Sizes.



Example 3
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Figure 19. Sample Means, SEx = 5, when control (
Populations are Identical.
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Figure 20. Same as Figure 19 except that different extreme means are
identified (control, ; experimental, ).
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Figure 21. Differences between means, SEz,-%. = 7.07, on a scale of raw scores.
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Figure 22. Same as Figure 21 but on a scale of standard error units (SExex0)-



