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THEOREM

The Central Limit Theorem. 1If a random sample of size n is drawn from a
population with mean u and variance 2, then the sample mean X has approx-
jmately a normal distribution with mean u and variance g?/n. That is, the
distribution function of

X —p
o'/\/;

is approximately a standard normal. The approximation improves as the sample
size increases.

;. Samples ot size n were drawn from a population having the
probability density function

fix) = {fe

The sample mean was computed for each sample. The relative frequency histo-
gram of these mean values for 1000 samples of size n = § is shown in Figure 6.12.
Figures 6.13 and 6.14 show similar resuits for 1000 samples of size n = 25 and
n = 100, respectively. Although all the relative frequency histograms have a sort of
bell shape, notice that the tendency toward a symmetric normal curve is better for
larger n. A smqoth curve drawn through the bar graph of Figure 6.14 would be
nearly identical to a normal density function with mean 10 and variance
(10)%/100 = 1.

—¥i10 x>0

elsewhere



FIGURE 1
Relative Frequency
Histogram for x
from 1000 Samples
of Sizen=5

FIGURE 2
Refative Frequency
Histogram for x
from 1000 Samples
of Size n = 25
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The Central Limit Theorem provides a very useful result for statistical
inference, for we now know not only that X has mean x and variance o2/n if the
popuiation has mean u and variance a2, but we know also that the probability
distribution for X is approximately normal. For exampie, suppose we wish to find

an interval (a; b) such that

TR



FIGURE 3
Relative Frequency
Histogram for x
from 1000 Samples
of Size n = 700
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This probability is equivalent to
P(“_“sx_fsb"f)zoss
a/\/rvi a/\/n oln
for constants 4 and . Since (X - ,u)/(a/\/r_:] has approximately a standard normal
distribution, the above equality can be approximated by

P(“_ﬁszsb—“)=o.95
a/\/n O’/\/P_‘l

B ‘where Z has a standard normal distribution. F rom Table 4 in the Appendix we

know that
P(—-196 £ Z < 1.96) = 095

and hence
ATKE. 1es PTE_ g
a//n a/\/n

or

a=p - 1.960'/'\/E b=u+ 1.960’/\//;



_ THE SAMPLING DISTRIBUTION

OF 8z

The beauty of the Central Limit Theorem lies in the fact that X will have
approximately a normal sampling distribution no matter what the shape of the
probabilistic model for the population, so long as # is large and o2 is finite. For
many other statistics additional assumptions are needed before useful sampling
distributions can be derived. A common assumption is that the probabilistic model
for the population is itself normal. That is, we assume that if the population of
measurements of interest could be viewed in histogram fashion, that histogram
would have roughly the shape of a normal curve. This, incidentally, is not 2 bad
assumption for many sets of measurements one is likely to come across in real-
world experimentation. X

First note that if X, ..., X, are independent normaily distributed random
variables with common mean x and variance o2, then X will be preciselv normally
distributed with mean y and variance ¢%/n. No apyroximating distribution is
needed in this case since linear functions of independent normafl Tandom variables
are again normal.

Under this normality assumption for the population, a sampling distribution
can be derived for §%, but we do not present the derivation here. It turns out that
{n — 1)S%/o% has a sampling distribution that is a special case of the gamma density

function. If we let (n — 1)S%/6% = U, then U will have the probability density
function given by
1
n—1
= { T (5 )

0 elsewhere

uln‘l):Z—leﬁu,’l u>0

- “The gamma density function with & = v/2 and § = 2 is called a chi-square density
Junction with parameter v, The parameter v is commonly known as the degrees of
freedom. Thus when the sampled population is normal, (n — 1)S%/a? has a chj-
square distribution with n — 1 degrees of freedom.
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DEFINITION

FIGURE- D
Distributions of Two
Unbiased
Estimators, 0, and
6., with

vib,) < v(é,)

| An estimator & is unbiased for estimating @ if

EG)=¢6

In the sampling distributions we saw that the values
of X tend to center at y, the true population mean, when random samples arc
selected from the same population repeatedly. Similarly values of S? centered at o7,
the true popuiation variance. These are demonstrations of the fact that X is an
unbiased estimator of u and 52 is an unbased estimator of o2,

For an unbiased estimator 4 the sampling distribution of the estimator has
mean value 6. How do we want the possible values for § to spread out 1o either side
of 8 for this unbiased estimator? Intuitively it would be desirable for all possibie
values of f to be very close to . That is, we want the variance of # to be as small as
possible. At the level of this text it is not possible to prove that some of our
estimators do indeed have the smallest variance among all unbiased estimators, but
we will use this variance criterion for comparing estimators. That is, if f, and 8, are
both unbiased estimators of 6, then we would choose as the better estimator the
one possessing the smaller variance.

»



FIGURE B

The Construction of
a Confidence
Intervaf

General Distribution: Large-Sample
Confidence Interval for u

Suppose we are interested in estimating a mean y for a population with variance o,
assumed, for the moment, to b¢ Known. We select a random sample X, ..., X,
from this population and compute X as a point estimator of u. If n is large (say,

as a rule of thumb), then X has approximately a normal distribution with

mean u and variance o?/n. From these facts we can state that the interval

ut 20/\/; contains about 95% of the X values that could be generated in repeated
random samplings from the population under study. For convenience let’s call this
middle 95% the “likely” values of X. Now suppose we are to observe a single sample
producing a single %. A question of interest is “What possible values for 4 would
allow this X to lie in the likely range of possible sample means?” This set of possible
values for u is the confidence interval with confidence coefficient of ap-
proximately 0.95.
The main idea of confidence interval construction is shown in the diagram_

- 20vn V4

Possible
values
for 73

“Likely"

sample
means

/ Xo Possible vaiues for x



More formally, under these conditions

X -y
a/\/;

has a standard normal distribution, approximatety. Now for any prescribed o we
can find from Table 4 in the Appendix a value 2452 such that

P[—ZE/Z = zZ < +Za';2] =1—-=

Z =

Rewriting this probability statement, we have
B ¥ —
l — = P —z,,z s o

£ +z 2:|
i of/n
P- o <4 GJ
= —Zy2 —= —HE 42—
| m'z\/r;“- EIZ\/;

= -3
-<-.#-<..X+Z¢',z--—-:|

NG

>

Sile

The interval
(‘ o _ + (v
X =1z j2 » X za!Z
L n NG

forms a realization of a large-sample confidence interval for u with
confidence coefficient approximately (1 — a).




FIGURE :7 y
Deterministic and
Probabilistic Models

L L 1 1 1 x
(b} Probabilistic model!

{a) Deterministic model
v = 8x + random error

y = bx
Figure shows a possible set of responses for the same values of x when
we are using a probabilistic model. Note that the deterministic part of the model
{the straight line itself) is the same, Now, however, the inclusion of a random error
component allows the peak loads to vary from this line. Since we believe that the
- will vary randomly for a given value of x, the probabilistic model

provides a more realistic model for Y than does the deterministic model.

GENERAL FORM OF PROBABILISTIC MODELS

\ Y = deterministic component + random error 1

where Y is the random variable to be predicted. We will always assume
that the mean value of the random error equals zero. This is equivalent
to assuming that the mean value of ¥, E(Y), equais the deterministic

component of the model:

E(Y) = deterministic component




FIGURE 8
The Probabilistic
Model Y=y +¢

14

THE STRAIGHT-LINE PROBABILISTIC MODEL

Y=fo+pix+e

where Y = dependent variable (variable to be modeled)
x = independent variable (variable used as a predictor of Y)
¢ = random error component
Bo =y intercept of the line, that is, point at which the line
intercepts or cuts through the y axis (see Figure 9.3)
B, = slope of the line, that is, amount of increase (or decrease)
in the mean of Y for every 1 unit increase in x
(see Figure 9.3)

Il

FIGURE 8- vy

Straight-Line
Probabilistic Mode!

£, = slope

B = y-intercept

1 1 i 1 X

o 1. 2 3 4

Note that we use the Greek symbols 8, amd B, to représent the y intercept
and slope of the model, as we used the Greek symbol i to represent the constant
mean in the model Y= u + £ In each case these symbols represent population
parameters with numerical values that will need to be estimated using

sample data.




FIGURE 10 v
The Probability s B X
Distribution of ¢ E\Y\g Po
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Error probability distribution
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PROBABILITY DISTRIBUTION OF THE RANDOM .

ERROR COMPONENT ¢

The error component is normally distributed with mean zero and
constant variance o2. The errors associated with different observations
are independent.




FIGURE 11 14

Graph of the Mode/
Y=8,+¢
bo . .‘ U.ot.-:. s %
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SAMPLING DISTRIBUTION OF B,

If we assume that the error components are independent normal
random variables with mean zero and constant_variance o, the
sampling distribution of the least-squares estimator B, of the slope will
be normal, with mean B, (the true slope) and standard deviation

op, = (see Figure 9.8)

SN
[Note: Proof of the unbiasedness of §, and a derivation of its standard
deviation are given next.]
FIGURE 12
Sampling

Distribution of i .




FIGURE 13 ¥
Error of Estimating w
the Mean Value of

Y for & Given Vaiue
of x

Estimate of true
mean at X = X,

l

Xp
FIGURE 14 v
Error of Predicting a |
Future Value of ¥ . Bt
for a Given Value
of x

Prediction of
particularY atx = x,

|
v

Particular value ot Yat x = x,

Error of prediction
1

Xp




SAMPLING ERRORS FOR THE ESTIMATOR OF THE MEAN
OF Y AND THE PREDICTOR OF AN INDIVIDUAL Y

1. The standard deviation of the sampling distribution of the

estimator Y of the mean value of Y at a fixed x is
1 4 (x — x)2
op=6 |-
¥ n SS,,

where ¢ is the standard deviation of the random error &

2. The standard deviation of the prediction error for the
predictor Y of an individual Y value at a fixed x is

1 (x-— 5()2
) = 1+-
Oiy-t)=0 \/ + . -+ SS,“

where ¢ 1s the standard deviation of the random error &,

The true value of o will rarely be known. Thus we estimate o by s and
calculate the estimation and prediction intervals as shown next.

A 100(1 —u) PERCENT CONFIDENCE INTERVAL FOR THE
MEAN VALUE OF Y AT A FIXED x

¥ & tya{n — 2) (estimated standard deviation of e)

. 1 (x—x?
Yt an— 2)s " + SS..

i)

1 (x—x)*
_-t IafZ(n - ;‘)S \/; + SS -

XX




FIGURE 15

A 95% Confidence
interval for Mean
Peak Power Load
and a Prediction
interval for Peak
Pow - Load When
x=80

FIGURE 18

The Danger of
Using a Model to
Predict Outside the
Range of the
Sample Values of x
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To calculate the standard error of a mean, al! you need is the size of the samplu:E

and its standard deviation:

N = 10,000
§=10.2

Of course, you can't calculate the standard deviation unless you know the mean, so
it, too, is essential:

X=115.5

SEx = 0.102

A / Obtained sample mean

I ] ¥ I T | 1 I 1 I 1
1156 1 2 3 4 1155 .8 T 8 9 1180

B _ 025
A\ /

f I T I I
115.3

Hypothetical population mean

025
c . \ Y
]
1 T T |
1157
Hypothetical population mean
D
L §
| T
115.3 115.7

I—— Confidence interval —-I

Figure 17 Establishing a confidence interval at .95 level of confidence,



AN

Distribution of individuals

VAN

Distribution of sample means when N =1

N\

Distribution of sample means when N = 25

Distribution of sample means when
N = entire population

Figure 18 Distributions of individuals and of the means of sampiles of three different
sizes.
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56 61 66 71 76

51 81
/ . J\
Smallest Largest

control group experimental group
mean mean

) and experimental (- - -)

Figare 19 Sample means, SE3 = 5, when control (
populations are identical.

! ] I
56 61 66 71 76

51 81
/ L )\
Smallest Largest

experimental group control group
mean mean

Figure 20 Same as Figure 7-5 except that different extreme means are identified
(control, ; experimental, - - -),

! 1 i ] | L ]

2121 -1414 -7.07 0 +7.07 41414 +21.91

Figﬁe 21 Differences between means, SEz, _3 = 7.07, on a scale of raw scores.

o 1SE 28E 35E

Obtained difference = 10 raw score points
or 1.41 standard score
points

Figure 22 Same as Figure 7-7 but on a scale of standard error units (SEz _3).
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Practical Statistics for Floodplain Managemert Decigions

. The experience of a large flood control district with regionsl calibration
of its hydrology manual.
A. Management needs and reguests for certainty.

B. What variance gells you about the strengtk of your calibration.

c. Management use of confidence intervals.
1. Design of structures tc be maintained by the agency.
2. Non-grrucrcural evaluation

3. Existing conditions floodplains
4. Envireamental amitigation
II. Wwhy calibrate?
A Prescriptive hydrelegy may be strongly biased.
I, Strengthens agency pesition in enforcing standards.
c. Reduces agency vulnerability to litigation (opponents typically
cannet produce a superior calibration to that of an agency) .
1XI. Can you aalibrate vour hydrology (HEC-1, SCS TR-20, etc.) to rain and
streémg&ge data?
A, ﬂgt site® calibration?
B. Regional calibrasion?

C. Puality and quantity of gage data.
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FMA Statistics Workshop

T.A. A flood control district’s managers (all professional engineers)
wanted to base the district’s new hydrology manual on straamflow data
rather than the previcus manual‘s reliance on rain data combined with
prescriptive models, The rain data and prescriptive modal method
essentially "asserted" the frequency of the calculated runcff with ne
way of knowing whether or not the agsertion was correct to any degree at
all. Manasgers thought that basing the Ilood frequency of model resulls
in the new manual on stream flow data would provide something close to
certainty in the compured resulte, Did crhey get what they wanted?
Let’a lock at what was possible and what was actually done to meet thelir
perceived need for cartainty.

The availability of a large data set composed of stream gage and
rain gage data <collected by the U.3. 7rxrmy Corps of Engineers for
selected watersheds in and around Los 2Angeles made the calibration
effort possible. The "LACDA" data set has been described as the best
regional calibration data set available in the Southwestern United
Stares.

1.8, In spite of the large LACDA data set the results of freguency
analysis displayed a distuxbing degres of variance. Variance is a
measure of how much the data “spreads® from it's central values (mean,
median, mode). A large amount of variance is very typical of estream
flow data. We are all familiar with the "bell curve® or Gaussian
'normal® distribucion (see figures i and 2}.

We might remewmber here that the rain aod stream gage data used to
develop the famous 5CS Curve Numhers (CN) bad about as many large runoff
events on dry watersheds as they had small runoff events on wet
wateveheds, This counter intuirive result is unfortunately common in
deta derived from field data.

Congidar the sharp paak curve {(cmall variance) that plots freguency
on the y-axis and data on the x-axis {fig. 1), This curve might be
typical of measurements made on precision ball bearings. The Jdiameters
of the bearings might vary no mere than 0.00005" for 95% of those taken
in any sample. The y-axis tells Yyou how frequently you would find
bearings of particular dimensions.

Now lock at broad peak curve {large variance-fig. 2). We are using
the bell curve to illustrate a point that is not leost by avoiding the
more complicated Log-Normal (IN) or leg Pearsen III (LP3) curva that is
widely used to represent actual stream flow data.

Figure 2 plots frequency (y-axis} versus the range of possible
100-year Q’'s (pay in cfs/sq.mi.). Note that Q‘s that vary £20% have
very similar fregquencies. That means that the data is telling you that
the best calibration data gives a 40% range in wagnitude for Qs cthat
are very close to the same likelihood of cccurremce. E.g., a discharge
of BOO ofs or 1200 cfs 1z mnearly as likely to be the Q-100 as the
¢encral value of 1000 ¢fs in this example.

For a floodplain manager this is not good news. There is a large
amount of unecartainty in the calibration results in spite of a large
amounit of high ¢guality gage data. The message to be recaived and
understood here is that the "true® Q100 is Dot only uckoown ic i=
unknowable., The statistics are not wrong but they ard geak and oannot
be made ketter than they are (data is data).

In the disrant furure, with a thousand years of addirional daca, we
will still find that there remain® a substantial amount of variance in
flood fregquency analysis. The rainfall-ruzeff process 1is ioherently
complex and will not become simpler because we measure jt 2 lot. We
are unlikely to find comprehensive solutions to the problems of gparse
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data collection from large watersheds, spatial and temporal incoherence
of dats, the inhomogeneity of the record {watershed development causing
large changes in watershed responsa te rainfall), the heterogeneitcy
{ncn—uniformity of rha s0il1 data, rain data, land use, ete.) and,
congidering the thousand year period suggestad abeve, large scale
climatic change that essentially invalidataes a1l prior data.

If we use the mean value of the distribution (50% confidence
interval) on a regional bacis half of cur designs will be undersized (by
potentially dangerous margins) and the orher half oversizad but we wont
know which is which!

Well! What to do with all this uncertainty that cannot ba removed?
Statisticiang deal with this Problem all the time o let’s lock at their
methods. If you want to capture the "true” Q100 but cannsc confidently
Pin it down you can increase your chances of using & discharge that is
at least as large az the unknowable Q100 by going to higher econfidence
intervals. 8ee figure 2. The district chose to go one standard
deviation higher than the mean (85% confidence interval, often called
high confidence degign - HC) for design discharges usad for channel
improvements, lavees, dams and gther hydraulic structures for which the
district would ke liable for the rproper performance and facility
maintenance. That’s easy. Bigger is always better, zight?

I.c. Wrong!: What about evaluating a floodplain under existing conditicns
for which no conveyance facilities are to be buile for insurance
purposes? The mean value (50% confidence interval) is alsc known as the
"expected value® (EV). It is your best guess, the cne equally likely to
be high or low, scmetimes called the maximum 1ikelihood estimator. This
is the value that would help to balance insurance premiume with flgod
damage losses,

Whenever you want ro evaluate existing conditions, say tc determine
the level of protection provided by an old city storm drain system, EV
ig the bast choice.

Consider enmvircnmental mitigation. Let’s say a nsw residential
supdiviegion is going in near the headwaters of a watershad and there ig
a large cpen space preserve downgtream of the subdivision. In order teo
minimizer the development impact on the narural stream Qourse a retarding
basin is required. It is decided to mitigate the developmenr impacts
ftrom 2-year to 100-year discharges. Due ro the stréngly mnDon-linear
nature of the the freguency curve and the expanding envelopa of the §5%
confidence interval values the HC 2-yaar flow might be L0x greater than
the EV 2-yesar flow (Niguel Creek im Laguna Canyon, Orange County}.

Consider the effects on the natural stream if the cutles of the
retarding bagin is sized ro mizigare the develepment impact om the
2-year f{low to the HC value. At Niguel Creck that value was 300 cfs.
The EV 2-year flow was 30 cfs. Result: many frequent sterms were not
mitigated at all! The basin outlet was re-gized to the EV discharges
for all recurrence intervals and the downstream channel impacts wers
essentially eliminated. In this case using a SMALIER discharge was more
CONSERVATIVE.

II.Ra. Prescriptive hydrology may be strongly biased. Tzking & formila out
of a bhook writtem in New Jersey in 1589 and uging it in Souchern
California in 1896 gives little assurance that the desired recurrence
interval of discharge will be produced.
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IT.B. When negetiating subdivision approvals with developers an agency
having calibrated metheds has a much stronger pesition for rejecting
non-calibrated generic bydralegy submittals.

II.C. Because an agency regicnal calibration would typically use the begt
availabie data there can neo cther calibracion that is superior te the
agency’s. If litigation results frem overbank flows it ig easy to
assert that that the storm must have been larger than the required
Protection level (typically 100-year) if your design discharge ig
calibrated.

ITI. It has been shown in several journal articles chat ragional
calibration 4is more ‘“robust® than ‘at-site" ealibracieq (i.e., a
calibration specifi¢ to one channel location}. Being robust meang that
the results have lower variance and, as explained in (I} above variance
i# the biggest problem with calibration,

Any  ealibration rests on the guality, quancity and
representativensss of the data uged in the statistical analysis.
If you do not have access to a gage network start your own. Be

careful with streamgage site sclection.

It is very importanc to have & "ratablie" site 80 that stream depth
can be confidently converted into discharge.

Give careful thoughr to the homogeneity of the statigtical record at
a4 stream gage site, If the watershed has gone from 100% bean fields ro
100% urban development over the last 20 years you will ger misleading
results from applying standard merkods to the record. vy Lo use
watergheds whose development has changed little over the last 20 years

at least.
Blot Transformations - Lagrangian te Bulerian

Remember thar g gtreamgage is a2 nearly perfect integrator ¢f <the
hundreds of parameters chat mediate between rainfall apad runcff but
raingages, by definition, provide point daca, The point data frem
raingages typically samples lese rthaw one part per billien (often one
part per 10 killion) of the watershed area. For watersheds sensitive to
storm duravions of 3 hours or less widely spaced rain gages may not
adequaéely sample the rain while the streamgage is likely to measure
100% 0f rhe runaff, Tais problem is at the heart of succgssiyl
calibration., You cannot mave teo many ralngages.

Tu e conduy  Geuade we llay  see be able  co w88 TOE Dnew Naciona.
Weather Service WSR-8sd (NEX®AD) radars to develop CAD-like rainfall
raps for use in calibration studies, We will still need mechanical
gages to calibrate the radar images 8o do not postpone raingage
installations while waiting for NEXRAD to improve our calibrations.
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