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A new matrix system expansion is developed for the complex variable boundary
element method {or CYBEM). The expansion includes identification of matrix
components that contain the entire approximation error due to basis function
approximations. Bounds for error are developed by use of Taylor series expansions
of the problem solution from each nodal point used in the model discretization.
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INTRODUCTION

The complex variable boundary element method (or
CVBEM) has been the subject of several papers and
books (e.g. Refs 1-3). The basis of the CVBEM is the
use of the Cauchy integral equation to develop
approximations of two-dimensional boundary value
problems involving the Laplace or Poisson equations.
An advantage of the CVBEM is the property that
the resulting approximation function dxz) is analytic in
the simply connected domain £2 and continuous on the
simple closed problem boundary T'. Thus &(z) = P(z) +
ith(z), where $(z) and (z) are the approximation
function potential and stream functions, respectively,
and each satisfy the Laplace equation in Q. Because ¢)(z)
is the conjugate of ¢{z), the two functions form a
potential and streamline field. The general CVBEM
technique is briefly described in the following discussion.
Let w(z) = ¢(x,y) +it(x,y) be a complex variable
function which is analytic on ' U §2, where 2 is a simply
connected domain enclosed by the simple closed
boundary T' (Fig. 1). We define ¢(x,y) to be the state
variable (or potential function) and ¥(x,y) the stream
function, where ¢ and 1) are two-dimensional real valued
functions. Since w is analytic, ¢ and ¢ are related by the
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and thus satisfy the two-dimensional Laplace equations
in ©, namely
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The Canchy intepral theorem states that if we know the

value of the complex function w on the boundary I" and
if w is analytic on T" U {2, then wis given for any z in by
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The CVBEM forms &, an approximation of w, using
known values of either ¢ or ¢ on the boundary ' and
uses the Cauchy integral (3) to determine approximate
values for w on QUT. The approximator & is a two-
dimensional analytic function in € that can be differ-
entiated, integrated, or otherwise manipulated to obtain
higher order operator relationships.’

Let the boundary I be a polygonal line composed of
V straight line segments and vertices. Define nodal
points with complex coordinates z;, j=1,...,mon I’
such that m > V. Nodal points arc located at each
vertex of T and are numbered in a counterclockwise

z€,zgl (3)
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iy W(z) = Z) + 1Y(z)

Fig. 1. Problem domain and boundary.

direction. Let I'; be the straight line segment {complex
variable boundary element) joining z; and z;, ; so that

m
=1

where z,,,, = z). Thus m boundary elements T are
defined on T, where T',, connects nodal coordinate z,,
and z; (Fig. 2). The CVBEM defines a continucus global
trial function G{z} by

m
G(z) =Y Ni(2)(;+ i), ze€T (4)
i=i
where, for a piecewise linear polynomial global trial

function and j = 1,...,m, N;{z) is defined by
zZ— Zj_‘

zel,_
Zy — Zjg J=1
Nj(z) = 0 Zﬁl—'jUI—'j__l (5)
Z; -z
L‘ zEIﬂj
GviT %

and where ¢; and 1f; are nodal values of the two conjugate
components, evaluated at z;. Note that N(z;) = 1, and
Ni(zi_1) = Ni{z;;1) = 0. An analytic approximation is
then defined by
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Since usually only one of the two specified nodal values
(eﬁj, 1,51-) is known at each z;, j = 1,...,m, values for the
unknown nodal values must be estimated as part of
the CVBEM approach to developing an analytic

ze,zgl (6)
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Fig. 2. Discretization.

approximation function. The CVBEM uses various
techniques (such as collocation, least squares, Fourier
series) and develops a matrix system for use in solving
for these unknown nodal values,” solves the resultant
matrix system, and uses these nodal value estimates
along with the known nodal values in defining &x(z).

MATRIX SYSTEM DEVELOPMENT AND
ANALYSIS

In order to develop the CVBEM approximation
function &(z) defined on QQUT, the unknown nodal
values of &(z;) need to be determined. For m nodes, a
system of m complex valued linear equations are
developed by taking the Cauchy principal value of eqn
(6) evaluvated at cach node J, i.e.

=t L[ G0
r

W T
vz 2 C -z

) = , z eftand z ¢ (7)
where z;” is notation that point z; is approached, in the
limit, by z interior of .

In solving for the &;, j = 1,2, ..., m, complex numbers
are determined such that

m
w; = chka’k (8)
=1

where C;; are complex numbers determined by integrat-
ing eqn (7) for each trial function N,(¢{) used in G(¢) and
also where Cj; is with respect 1o the term ({ - z;} in the
denominator of eqn (7). It is noted that the Cj; values
are complex constants that depend on the trial function
used Ng((), the nodal point locations z;, and the
geometry of I'; that is, the C;; values do not depend
on the nodal values of w(z;). In eqn (8), the oy is the
nodal point value used in eqn (7) at node k.

Expanding eqn (8).

O =d+idy= ) (o +iGu) (e +idhe)

=1

Z(ajkﬁgk - lejk";ﬁk)
=1

=
+i z(ajk"?}k + B ti) (9)
k=1

where Gy = ajp + iy and @ = G + ity 1= V-1
and oy + g4 are real constants.

For analysis of the approximation error, we recon-
sider the above equations given new trial functions
N;(¢) with the special attribute that the N/(¢) are
‘perfect’ in the sense that

G'(0) = 3N (05 = () (10)
i=1



CVBEM matrix system 87

for all ¢ € I, and in eqn (10) necessarily @&; = w; for all
nodes j. For this ideal case,

i) =t L[ wl€)a¢
o =Ttz =1 5z [ F97
= (0 + 187 (@ + i) (11)

k=1

where 1 is the notation for the Caunchy principal value,
and aj and 3, are new real constants that depend on
w(¢) as defined on I'. Note that the nodal values used in
eqn (11) are exact, whereas the nodal values used in eqn
(9) are approximate.

In matrix form, for m nodes on T,

{¢k}m><l = [a;k]me{¢k}mxl + [_@k]mxm{qf’k}mxl
(12a)

{T/)k}mx 1= [a;k]m x m{wk}m x1+ [rﬁ?‘k]m xm{¢k}mx 1
(12b)

where {¢:} and {iy} are column vectors of the exact
nodal values of wy; [of] and [8];] are square matrices
composed of the of; and G, terms from egqn (11),
respectively.

In egns (12), either (12a) or (12b) can be used to
determine unknown nodal values (recall, only one
unknown nodal value occurs in the typical boundary
value problem under consideration).

In comparing eqns (9) and (11}, both systems of
equations utilize the known nodal point boundary
condition values. The unknown component, however,
is completely dependent on whether N;(() or N;'(() is
used. Obviously, N;(¢) is used in practice (and hence the
a;; and 3;; are constants independent of the problem
boundary conditions). The error in estimating the
unknown nodal point component, for each node, then
is a result of the difference between N;(() and N/(¢),
which is fully represented by the differences between o
and a;, or Gy and ;.

For a given boundary value problem, let

Ejfi = o — oy (13a}
Efy =Bk — O (13b)
Then from eqns (12), a new matrix expansion is

{8} = lojil{dn} + [=Bi{vn} + [Eicl{¢}

+ [~ B (v} (14a)
() = laal{vn} + 1Bul{da} + [ES] {wn)
+ [~ER){#e} (14b)

where m x m matrices [Ej] and [Ej‘i] depend on the
given boundary values on I', and where exact nodal
values of ¢ + iz result due to use of the ideal N;(()
basis functions.

In (144, b) it is seen that all error of approximation
is due to the contribution of matrices [Ef] and [E}].
To examine these later matrices, we will assume that
the solution to the boundary value problem w((), is
analytic on a larger simply connected region £} such that
QUT C= Q. Furthermore, define a circle R; at each
nodal point j such that the center of R; is z; and the
radius r; is the larger of the distances |z; — z;_;| and
|zj+1 — zl; that is, r; =max{|z; —z;_y|, |21 — 2}
Then (2 is also assumed to contain each R; (and hence
the disc interior of each R)).

Because w(z) is analytic on §, then w(z) can be
expanded as a Taylor series at each node, Ti(z), where
the radius of convergence of Tj(z) is greater than #; of
circle R; (assuming w(z) is analytic over £2). Then for
node j, the Taylor series expansion of w({) for ¢ € T,
centered at z;, is

dw
T(0) =w+ 30 (€~ 5)+9(0) (1)
where 7(¢) is the Taylor series remainder term given by
_ (¢— zJ,-)2 w(u) du
"0 = "5 L,. w—Q)u—1z) (16)

where the contour integration of eqn (16) is on the circle
R; (centered at z;), u is the local coordinate on R; and
(EFJ OI'].—}_I.

A bound for the Taylor serics remainder ||n(¢)| can
be developed. Let M be the maximum value of w(z) over
2 (such a maximum exists by the maximum modulus
theorem); then from eqn (16), '

K — z* o (a2)] | ] 2 M2r,
”W(C)“ < 2 JRj |u _ C' |u _ zj!Z — 271.('.]_ _ r)'}Z
(17)

where ; is the radius of circle R;, and r = |( — z;].
Simplifying,
Mr
WO € ——= 18
IO < & (18)

where necessarily 0 < r < r;.
OnTy, for (€1},

E(¢) = T;(¢) — G(Q)
= (wj + %" L_(c -z + n(C))

- [(j—‘;’) = (M)] (¢~ ) + i)
(19)

41T
From eqns (18) and (19), as the maximum distance
between nodes decreases, then r;, — 0 for all j and
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therefore ||n{(}|| — 0, giving a convergence bound for
the CVBEM matrix system. Hence, as all r, — 0, the

%) and [E ] matrices both approach the m x m zero
matrlx in the limit.

Application of CYVBEM matrix system component
determination

To demonstrate the above matrix system development, a
standard least squares CYBEM analog’ is expanded
with respect to eqns (8)—(14).
For z € ), the CYBEM approximation function (z)
can be expanded by noting that
I NQd [ (¢—z-1)d¢
r (—z 51 (6 —2)(zj41 — 2)
r“’ (2741 =€) dC
+
2 ( _]+1 - )( - Z)

=rf ((-z+z—z_.1)d
o (§ =2}z —z-0)

szn (Zj+1 —Z4+ 2z C) dc
z){(¢ - 2)

z-
=14 (;j—_*—z}—-l-) (ln(z —Z)
~In{z;_y —z)} + -1

% (zj+1 -

+ (2':11 __;) (In{z; 1 — z) — In(z; — z)}
(20)

Combining the above terms, the linear trial function
CVBEM weightings le (z) are

= 2mi [(; iz:ll) (In(z; - z) — In(z;_, — 2))

+ i’tlgi (]n(zj+1 —z)— ln(zj - Z))
(z'+1 z) :l
o (1)

where the superscript 1 is the notation for a linear basis
function (first order polynomial}.

In comparison, for a constant element trial function
(supetscript (),

([P 4 [ &
B zm(qu C“Z+Lj C—z)
=2mi(ln(z; — z) — In(z;_, - 2)

+In(z; 1, —2) —Infz; — z))
= 2mi(In(z; . — 2) ~ In(z;_; - 2)) (22)

N'(z)

N(2)

Thus, for a constant trial function,

o(z) = zm:uﬁj}.rri(ln(zjﬂ ~z) ~ Infz;_
j=1

1—2) (23

Hereafter, we will let N(z) = (z) for simpler
notation, as only the hnear basas function will be
carried forward in the mathematical development.

Error analysis

The approximation error E{z) is given for the CVBEM
by reference to eqn (17):

= w(z) - ) = o | LGOIy

[ (@)
E@) g L Tz

The norm of E(z) is bounded by

1B <5, j lt0) - S0 )
”“"(Q G(QOllcer (25)

< 375
where L = length of I, p = minimum distance between
print z and { € I (recall, z € I'), and
() = G{Qlicer = max () ~ GOl for (eI’
{26)
Let d be the maximum value of ||z;,, - z;|| for all nodes

J. Because w(z) is analytic on T, then so is w'(z), and
there is a positive real number M such that ||w' (¢)|| < M

forall¢ eT.
Then
d
o0~ 6Ol < a5 ) = am @
Thus
ML\ 1
IE@) < ( = )n—,, 769, zgT (28)
Because 4 is the max ||z, — z|f, then let d <2L/m.
Thus
ME*\ 1
IE(z)| < ( =p )— (29)

and | E{z)|| — 0 as m increases, for any point z € T
Thus the CVBEM converges to the solution w(z)
pointwise for any z € 2.

Mixed boundary problems

We have developed in the above a CVBEM approxi-
mation function for linear basis functions,

(z) = Zm:Qij(z), ze9, zgT (30)
j=1

Suppose we know only one value of either cEJ or 1,43; (not
both) at each node j, and that both functions ¢(z) and
¥(z) are defined for at least one node respectively. We
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need to estimate the unknown nodal values to form a
well defined approximation function &(z).

An approach for estimating the unknown nodal
values is to minimize |G({) — &{¢)|| for { € T'. A collo-
cation technique is to minimize ||G(z;) — &(z;)| for all m
nodes defined on I" (see Ref. 3 for a generalization to a
Fourier series).

For & = (¢; + iY);), we have

wiz) =

(¢’; + le) (zk)

h
3 uMa

i

( P+ i'l/_)j) (o + iﬂjk) (31)
1

where Qg = Re [Nj(zk)], ﬁjk =Im [AG(Z};)] Recall that
the o and §;; values are all real constants,
Then

w(z) = jé[&f(afk +iG8) + ¥ (ioye — 18] )
G(zi) = & + it

Then
1G(zi) — (z)|I* = e + ithy — Az 1

2

=6 + e ~ Y _[Blayk +iBi) + Bilioyx — i8]

i=1

= 51: - Z(ﬁgjajk - %Ejﬁjk)
=1

+ (_k - i(&jﬁjk + "Z’kajk))

=

2

= &k - Z(ﬁgjajk - 'J’jﬂjk)z
j=1

2
(33)

+ (?Ek - Z(ngﬂjk + ‘%Ekajk))

i=1

A least square technique is to minimize
1 N2
X = Z Xk
k=1

with respect to all m unknown nodal values, k =
1,2,...,m. Reference 3 provides an extension of this
minimization technique to a generalized Fourier series
expansmn

Then % is defined as the sum of xi terms by

m

= 3 |- St 97
j=t

k=1

m 2
+ ("Z’k - Z(&jﬁjk - %Z‘jak)) ] (34)
j=1

We now consider the usual minimization of y? with
respect to an unknown nodal value.
First, for ¢; unknown,

a 2 m _ m — -
% = [2 (¢k = > (G — %bfﬁjk)) (~au)
bk =t

(‘%bk - Z(Gﬁjﬁ}k + %a;k))( 6!k)J
. 2( .
i=
( (i ¢;ﬁ;z "zjaﬂ)) (—ﬁu) (35)

J=

(¢J Gir 1.9,@1))(1 ‘-aﬂ)

+2

Similarly, if +; is the unknown nodal value at node /,

e —

2

2 = 5o (5~ S a0 )0
I k=1 j=1
ey
+2 ( Z(¢Jﬁjk + ¢1ajk)) (a”c)]
j=1

+2] ¢y — Z(%aﬂ i!_)j»@ji)) (Bi1)

j=1

m
+ 2(#’1 S (68— "'ai’jajl)) (1 -ay) (36)
i=1
Setting each partial derivative to zero in eqns (35) and
(36) results in an m x m matrix system (see below).
A closer look at the above derived real constants ¢y,
and f3;, indicates that

Ni(z) = oy +18y (37)
is a Cauchy principal value result, i.e.
oy + iﬁ” = 111'1':17 N;(Z), zel (38)
-1

where z; is the notation that z approaches nodal point
z; € T from the interior of Q.
Then

hm Ni(z) = 2milln(z141 — 21) — Inz; -y — 2])}

= ay + 16 (39)

A comparison of the results of eqns (14¢,b) to eqns
(36)-(39) provides for a direct computation of the real
constants oy, and 8. Use of a different technique, such
as a Founer expansion or collgcation, 2 results in
different matrix component values.

Matrix system formulation

For m nodal points on T, there are m unknown nodal
values, one unknown at each node j. The above
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minimization process produces m linear equations as a
function of the m known and m unknown nodal values.
A m x m matrix system readily represents the system of
m linear equations by

(Eu)m x1= [A]m xm(&u)m x1 T [B]m x m(ﬁk)m x1 (40)

where (£,) is the column vector of unknown nodal
values, (£} is the column vector of known nodal values,
and [4], [B] are m x m fully populated matrices of real
constants.

The above matrix system is readily solved for the m
unknown nodal values by

(&) = (1N - [4D ™' [B)(&) (a1)

where [[] is the order m identity matrix.

CONCLUSIONS

A matrix system expansion is developed for the complex
variable boundary element method {or CVBEM). The
expansion includes identification of matrix components
that contain the approximation error due to basis func-
tion approximations. Bounds for error are developed by

use of Taylor series expansions of the problem solution
from each nodal point wsed in the nodal model. The
resulting error bound is used to demonstrate conver-
gence of the approximation to the exact solution as the
distance between nodes on the problem boundary
decreases. With this developed matrix system the
approximation error is isolated from the CVBEM
approximation system and is more suitable for further
analysis and convergence studies. Further research is
needed in identifying possible characteristics of the
[Ejk] and [Eﬁ] matrices, given problem boundary
conditions; such information can lead to improved
CVBEM approximators,
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