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I. INTRODUCTION

Most engineering problems involving two-dimensional potential flow in a domain, and related
problems can be numerically solved by means of the Complex Variable Boundary Element Method
{CVBEM) [1], including problems in groundwater flow [2], propagation of freezing fronts in algid
soils [3], groundwater contaminant transport [4], steady-state heat transfer [5], and St. Venant
torsion [6]. Some of these are Dirichlet problems, e.g., heat transport problems where the initial
temperature is specified on the boundary of the domain, and others are mixed boundary value
problems, e.g., heat transport problems where either the temperature or the heat flux are specified
on various segments of the boundary of the domain.

The CVBEM uses analytic functions of the form

T

ag+ahz + Y axlz — B)log(z — Br), (1)

k=1

together with various ways of selecting the coefficients to approximate the harmonic function,
which is the exact solution of the given problem by means of the real part of /2, the imaginary part
of h being the stream field function. A central theoretical issue is to establish that the solutions of
these boundary value problems can indeed be approximated by the functions givenin (1). This was
done in [7] for the Dirichlet problem with continuous or L¥ boundary data. The purpose of this
article is to give a different proof of the results in [7], which, as opposed io the proof given in [7],
is constructive in nature and which, therefore, can be used as the basis for numerical computations
that are theoretically based. This constructive proof is based on the idea of moving the nodes
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slightly outside the domain, a technique that has been used in computations. This idea is made pre-
cise below.

Il. RESULTS

Remark. The setting is as follows: Let §2 be a bounded simply connected domain in the complex
plane with a piecewise continuously differentiable boundary I, which is a simple closed curve
of finite length, parameterized by

v: [0,1] —T. (2)

It is assumed that the map -y is continuous on [0, 1], one-to-one on [0, 1) with v(0) = ~(1), is
continuously differentiable, with nonzero derivative, except at a finite number of parameter points
c1,- .., cp corresponding to corners that are not cusps; so that the right- and left-hand limits of the
derivative exist at each corner, are not zero, and satisfy the condition that for each j, v'{c;+) +
v'(¢;—) is not zero, so that ¢; is not a cusp. With these hypotheses on the parameterization of
T, there is a constant CT with the property that the ratio of the shorter arc length between two
points on the curve with their chord is bounded by this constant [8, pg. 31]: for 2, and z> on the
I, let the arc in the direction of z; to 25 be the shorter arc, so that this arc length is obtained by
integrating along T",

arc(zy, z2) = / [d¢], (3)
then we have
welen ) ¢ gy “)
|21 — 22

To correctly define the function (1), for each G5 on I" we need to specify a continnous non-
self-intersecting path Pg, , joining 3, to infinity, which lies in the complement of (2 U I'. Then
Pg, — B can be used as a branch cut to define a branch of the logarithm, log s, (z — J,), which
is analytic for z not on the branch cut Pz, — 3. Then (1) can, and should, be written as

Tre

ag + apz + Zak(z — Br)logg, (2 — Be)- (5}
k=1

These branch cuts and related matters are discussed in [9].

Theorem 1. Let g be a function analytic in a domain containing 2 U I'. For any positive €
there is @ function h, as given in (5), which is analytic in § and continuous on QU T, with

l9(2) = h(z)| <e, (6)
forzinQUT.
Proof. Choose 0 =1t) <ty < - < ¢, = 1,¢,.1 = ty, and set
B = v{te) N
fork=1,2,....,n+1,with 3,1, = 5. Let
6= R |Br+1 — Bl (8)

The nodes (7) will be used to define the function h of Eq. {5), which will be shown to satisfy (6)
for the proper choice of coefficients ag, ag. @y, . . ., @, and small enough &.
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Let I'y, denote the arc of I joining ;. to Gy.41. Define § on I" by defining it for z on T'y, by
i(z) = g 1(z — Bx) + gr(Brt1 — 2)

; 9
et — B ®
where
gx = g{O). (10}
Use § to define a function h analytic for z in £ by
1 -
he) = - [ 99 4 (1)

C2mi Jo -z

To evaluate &, the integral over I’ must be written as a sum of integrals over the arcs ', on which
& is defined by (9):

2wih(z) = j s & (12)
2 ¢
The k-th term in this sum can be rewritten as

gre+1(z — Br) + grl(Bugp1 — z)) dc (Qk+1 ~ gk )
( Bt = Be /F;_-f‘z ’ Brv1— B ) Jr, % (1

The second term in (13) integrates to gx41 — i, and so, when summed in Eq. (12), sums to
Zero.

A convenient way to avoid some technical difficulties that arise in choosing branch cuts for
the integrals in (12) is to differentiate h twice with respect to z. The first derivative of the first
term in (13) is

Gr+1 — Gk 1 Gk+1 gk
¢ + - . (14)
Bryt — Bk Jr. (—= Bry1—2 G-z
The second and third terms are obtained by ditferentiating under the integral and then integrating
1/(¢ — 2)?; they sum to zero in the equation for the derivative of . Differentiating again and
combining terms, gives

e = o 1
arih’ (2) = [ngrl 9 Y% Gk ) 15
(2) ; Bevr — B B — DB | 2— O )

where Gy = f,, and go = g,,.
Integrate (15) twice to see that & has the form given in (3) with

. I+l — 9k Gk~ Hk-1
2miay = — {16)

Bet1— Bk Be — Br
for k = 1,...,n; note that the coefficient gy, is the same for the functions g{z} + a + bz and
g(z). The function / is analytic except on the branch cuts Py, , ..., Pg, , and so is continucus on

YU, even at each S, since the limit of (z — 3y ) logy (2 — By ), as z — Gy, through values of
zin Y UT, is zero.

For z on T, the value of k(z) is equal to the limit of k{w), as w in £ tends to z nontangentially,
to which the Sokhotski-Plemelj formula [8, pg. 32] applies:

h(z) = (1 - @(z)) 8(2) + —— 9Her e (17)

27 érri,rf—z
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where the integral is the Cauchy Principal Value of the singular integral, and ©(z) is the interior
angle between the two tangents to the curve I at z; thus, ©(z) = 7 for z not a corner point. Since
g is analyticon QU T,

o2 - L fr Cgif);dc. (18)
Using (17) and (18) write
mer o) = (1= G2 ) o) —gen v o [ 29200y

To show that |2(z) — g(z)| is small and, in fact, bounded by a constant times &, several estimates
are needed.
For z on I';, as long as

L
0<b< -—~ 20
= 50 20
where L is the length of I', the arc from (;, to 5; | is shorter than the arc in the other direction,
and (3) can be applied:

r 30 |
lgk+1 ~ g(z)] = / gf(C)dfl < Biare(z, Bey1) < BiCr|Brr1 — Bkl (21)
where the integral in (21) is taken along the arc ', and
By = max{|g'(¢)|: ¢ € T}. (22)
Similarly,
19(2) — g < B1Cr|Besr — Ok (23)
Thus, for z on Iy, since
w1 - 2+ gk — glz - O
3(z) - glz) = (gr — 9(2))(Brrr — 2) + (gr1 — 9(2))(z 6,-‘), (24)
)8.'\‘.+1 - ﬁk

[9(z) — g(z)| € BiCr(|Bresr — 2| + |2 = Bi]) < BiCrarc(By, Bur1) < BICES. (25)

For { and z on I';, integrate along Iy, from z to {

¢
7O =@ =| [ o 01| < Baarctz,0)

< Baarc{fy, fiy1) < BaCrlBiy1 — Bl (26)
where

By = max{|g" (7)]: T € T} (27)
Then

' B4
l9%+1 — gk — (B — Br)g' (2)] = s {4'(¢) — g’ (2))dC

< BCr|Bry1 — Brlarc(Be, Orgr) < 32012‘|f5’k+1 — Bl (28)
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Then
gk+l - gk I 2 ' 2
S = g(2)| < BaC{|Bry1 — Bi| < B2CRé. (29)
By — By
Let
w(z) = g(z) — g(2). (30)
For z on I'y, not equal to either 8¢, or 3.,
i Gr+1 — Gk ’
wiz)= ="~ — . 31
()= G () (1)

For any z; and z3 on I with, say, the shorter arc on I" being from z, to 2, since w’(z) is piecewise
continuous on I', it can be integrated to obtain

|wiza) — wiz))] < I/ w'(C}dQ' < ByChbarc(zy, 29) < BaCblae — 2. (32)

Thus, w(z) satisfies a Lipschitz condition of order one with the Lipschitz constant B, ;6.
Use the standard device of writing the singular integral of (19) in the form

wQ) po_ [l mwl)
J = [ i) [ £ 33

— Z

The first integral exists, since w satisfies a Lipschitz condition of order one, and has modulus
bounded by

ByCs f d¢| < BoC} LS, (34
v

L denoting the length of [', while the second term in (33) is w(z}7@(z). Combine these estimates
and apply them to (19) to show:

1 -
h(z) = glz} = w(z) + i f] %ﬂﬁzd@} (35)
from which
3
ih(z) — g(z)| < & (BIC’E + Bz;;r'?[’) . (36)

For small enough &, this shows that (6) holds on I” and, therefore, holds i 2UT by the maximum
modulus theorem. Q.E.D.

Lemma Y. Lez Q be a bounded simply connected domain with boundary T, which is piecewise
twice dif ferentiable. Given ¢ > O, there is a domain (Y with piecewise continuously dif ferentiable
boundary I

Y Hour 3D
and a bicontinuous map U of T onto 1" with

W{z')—2'| <e  forallz’ on[”. (38)
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Proof. One simple and useful case is when {2 is convex, or more generally when §2 is starlike
with respect to a point z; in £2, [10] so that the line {az + (1 — a)2: 0 < @ < 1} is contained
in €2 for any z in {). Define ¥ by defining its inverse

U z)=—pz+ {1 +p)2 foreachzon . (39)

If §2 is contained in the ball {z: |z] < R}, then for 0 < p < ¢/R the conclusions of the lemma
will hold, noting that the line joining z to a point z on the boundary of €2 can only intersect the
boundary at that point and, therefore, (37) is satisfied.

Next suppose that T is two times differentiable with no corners. Define the map ¥ by

W(y(t)) = ~(t) —ipy'(t), {40)

where the term i+’ (£}, rather than the outward pointing normal —i(~'(¢)/|v'(¢}|}, is used for

simplicity. Equation (40} is indeed continuously differentiable and (38) holds for 0 < p <

€/ maxg«;<1 [y'(¢)]. It remains to show that Eq. (40) defines a simple curve and that (37) holds.
To simplify the notation, let

| = "y
M, fhax, Iy (t)] (41)
_ . 1r
My = max |y (2)] (42)
and
my = min |y (t)] (43)
Suppose that
{t) = U(s), (44)
then
v(8) — v(s) = ip(v'(t) — +'(s)). (45)
first, note that
: :
O -V =| [ o @] < Mo~ sl (46)

Second, note that

/”(“ | Crv(t) = +(s)|
v 1

(7"1)’(2)61%‘ < arC(’r(t)z'Y(S))I}geagcl(w”l}’(Z)l < - (47)

|t — s =

(s}

Equations (45), (46), and (47) show that (44) cannot hold for s # t, and, therefore, I is a simple

closed curve, if
1

T
48
O<r< a0, %)

Since the point ¥(-y(t)} lies on the line though (t) in the direction of the outward pointing
normal, the curve [ will remain outside of €2, and, therefore, (37) will hold, if it is shown that T
and I' do not intersect. Suppose that these two curves do intersect so that

U(s) = v(£)- (49)
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Then
¥(t) — (s) = —ipy'(s). (50)
Write :
i
10 =2s) = [ A
at u
= / {'y'(s) +/ 3" (T)d‘]‘] du
1 U
= ~'(s){t - s) +/ / v (r)drdu, 5D
so that 7
pry < W ()i + ¢ = 5)] < Mylt = s)2. (52)
From (47} and (50},
it 5| < CreM, (53)
1
and (52) and (533) cannot hold if
3
U<p<M2MEC,%’ (54)

which completes the proof that I' is a simple closed curve containing Q2 U T".

In considering the remaining case, where I" has a finite number of corners, a geometrical
discussion will make the result clear. This clarity is, however, purchased at the price of not
calculating explicit bounds on p, in contrast to the paragraphs above. In brief, consider the curve
I, defined by Eq. {40) except at the values of £ corresponding to the corner points. Because of
the smoothness conditions on I, near a corner y(t; ) the curves I and I are closely approximated
by two straight lines intersecting in that corner. If the interior angle at that corner is acute, then
there is a gap between the values of W(~(t,+)} and ¥{(to —)}; join those two values by a straight
line. If the interior angle at that corner is obtuse, then W (~(2)) for t < ¢y and ¥(+(t}) for t > to
intersect for ¢ near to; remove the two small arcs of I that extends beyond this intersection.
When these adjustments are made to I, the conditions of the lemma hold for sufficiently small
p. QED.

For any domain {2 arising in an actual engineering problem, it will be clear that the curve I
of lemma 1 exists: just think of drawing it by hand; and so drawn, it can be made even smoother
than T, not less smooth as in the lemmma. An alternate theoretical construction of I can be
accomplished by the use of a conformal map ¢ of the complement of {2 U I" onto the unit circle,
the existence of which is guaranteed by the Riemann mapping theorem, and letting I be the
analytic curve ¢~ !{z: |z| = r} for r less than but close to one. A practical difficulty with this
approach is that, for the map ¥ of the lemma to exist, the curve I' must be reparameterized by
the continuous extension of the unknown map ¢ to I'; and a further technical difficulty lies in
showing that this extension has the smoothness required by Theorem 1 [10, chap. 3].

Unlike the intuitive and theoretical approaches discussed in the paragraph above, the proof
of lemma ! shows how to construct I¥ in a way that can be made part of an actual computation.
The smoothness requirement in the lemma that the parameterization of I' be piecewise two-times
differentiable is stronger than is necessary, but leads to a simple proof and contains most problems
of practical mierest
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Theorem 2. (The Dirichlet Problem).  Let §) be a bounded domain with piecewise twice con-
tinuously dif ferentiable boundary T, and let a continuous real-valued function u be given on .
Forany e > O, there is a CVBEM function h as given in (3), which is analytic in } and has Re(h)
conrtinuous on U T with

|Re(h)(z) —ulz)] <e  forallzinQUT. (55)

Proof. The standard existence theorem for the Dirichiet problem states that there is a function
[ analytic in © with Re{f) continuous on 2 U T and Ref(z) = u(z) for z on T'. Since Re(f)
is continuous on the compact set {2 U T, it is uniformly continuous there and so thereisa d > 0
with

|Ref(z) - Ref(w)] < for z and win QUT and |2 — w| < 8. (56)

b

Choose p,, — 0; then the maps ¥, (v{t}) = () — ip,¥' (t) of Lemma 1 satisfy

W, {(z) —z{ =0  uniformly forzonT, 57

and, letting £, denote the interior of the curve I'] ,

&, o0ul for all n. (58)

Choose a point wg in £ From the Riemann mapping theorem there is a unique one-to-
one analytic map of D = {z: |z] < 1} onto Q/,, with ¢,,((0) = wy and ¢;,(0) > 0, which,
by the Carathéodory extension theorem, is also a continuous one-to-one map of the closure
D = {|z| € 1} of D onto the closure of {1/, . And, by the same theorems, there is the corresponding
one-tp-one continuous map ¢ of D onto 2 U T, which takes 0 to wy, has ¢'(0}) > 0, and is a
one-to-one analytic map of D onto €. Since the parameterization W), = v(t) — ip,v'(t) of I'},
converges uniformly for 0 < ¢ < 1 to the parameterization y(¢) of [', Rado's Theorem [10, pg.

26, or 11, pg. 62] applies to show that
& — ¢ uniformly on {z: |z| < 1] (59

Consider the composition f o ¢ o¢;;!(z), which is analytic on £, , a domain containing QUL
From Theorem } there is a CYBEM function b, of the form given by Eq. (5), which is analytic
in £2, continuous on §2 U I', and satisfies

|R(z) — fogoo'(2)] < % forzimQQUT. (60}
For z = ﬁi’n(w) in Q’;r UI‘;”
[pogr'(z) ~ 2] = |p(w) — ¢, {w)] < & for large enough n, (61)

the & being the & of Eq. (56), and (61) holding uniformly for z in £/, UT", and a fortiori uniformly
for z in Q2 U T. Take n large enough; then, forall zon T,

|Re(h(z)) — u(z)| < |Reh(z) ~ Ref o ¢ o, (2)]
+ |Ref oo, (2) — Ref(z)| + |Ref(z) —u(z)] < e (62)
by combining the results above. Q.E.D.

Theorem 3. (The L? Dirichlet Problem).  Let (2 be a bounded domain with piecewise twice
continuously dif ferentiable boundary T, and let a real-valued function u be given on T', which



APPROXIMATE SOLUTIONS FOR TWQ-DIMENSIONAL POTENTIAL PROBLEMS 727

belongs to L (I'), for 1 < p < co. For any € > {), there is a CVBEM function h as given in (5),
which is analytic in Q and has Re(h) continuous on Q U T with

f |Re(h —u(2)|"|dz| < «. {(63)

Proof. See the proof of Corollary 2 in {7]. Q.E.D.

It is possible to derive CVBEM approximation resuits for mixed boundary value problems of
the type most common in applications, where the harmonic function u is prescribed on part of the
boundary of the domain, and its normal derivative is prescribed on the remainder of the boundary,
using the representations given in {11]. The results are similar to those obtained for the Dirichlet
problem, but several difficulties arise for the mixed problems, which are distinctive, e.g., the
CVBEM functions are bounded, but the solution to a mixed problem need not be bounded, and
will be addressed in a further article.
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