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ABSTRACT

Rainfall-runoff modelling uncertainty can be analysed by the use of a stochastic integral formulation. The stochastic
integral equation can be based on the rainfall-runoff model input of model rainfall or model rainfail excess. Similarly,
the stochastic integral equation can be based on the rainfall-runoff model output of the modelled runoff hydrograph.
The residual between actual measured runoff data and modelled runoff (from the rainfall-runoff model) is analysed
here by the use of a stochastic integral equation. This approach is used to develop a set of convolution integral transfer
function realizations that represent the chosen rainfall--runoff modelling error. The resulting stochastic integral com-
ponent is a distribution of possible residual outcomes that may be directly added to the rainfall-runoff model’s deter-
ministic outcome, to develop a distribution of probable runoff hydrograph realizations from the chosen rainfall-runoff
model.
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INTRODUCTION

The state of the art in current rainfall-runoff models is to use computers to approximately solve the various
complex mathematical partiai differential equations (PDEs) that describe the hydrological cycle as
distributed over the catchment (or watershed)} and to approximately solve the flood flow timing PDE
involved in conduit flow routing (i.e. time varying flow effects in streams, channels, pipes or other
structures). Empirical equations are used to describe the modelling components of evaporation, plant
transpiration, infiltration of moisture into the soil, percolation of soil moisture into deeper soils and
ponding of water, among other effects. The hydraulic effects of flood flow routing in streams and conduits
are described by the non-linear PDEs known as the Navier—Stokes equations, but are approxzimated by
simplified algorithms such as the kinematic wave, Muskingum, convex, diffusion or other flow routing
techniques (see Hromadka et al., 1987b). The main thrust in computer modelling of the rainfall-runoff
process is to subdivide the catchment into smaller subcatchments (or subareas) that are ‘linked’ together
by the hydraulic flow routing models used to represent storm flow in streams and channels. Each subarea
is assumed to have a representative rainfall-runoff response, described by a set of hydrological parameters
and equations. The subarea runoff, which is assumed to depend only on the rainfall history (and subarea
hydrological cycle characteristics), is generaily assumed to concentrate at a ‘nodal point’. The assemblage of
all these links and nodes forms the catchment ‘link-node’ rainfall-runoff model.
The main objectives of this work is presented in four parts, as follows:

1. Development of a generalized stochastic integral equation representation of rainfall- runoff. Although
over 100 link-node modeiling techniques are currently reported, almost all these rainfall-runoff
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Let cach of the 40 plots’ runoff be equated to g4, (¢) by use of the random variables [;] and [¢;) for each
R; where for each storm event, i _ - _

4; (1) = Xqai(t - ;) (2)
where it is assumed in Equation (2) that the variations between a g/{¢) and g4 (f) are only first order with
respect to magnitude and timing. The frequency distributions of [A;] and {#,] are developed from a large
collection of values determined trom Equation (2). It is noted that the several random variables may be
all mutually dependent. _

The stream gauge runoff, O,(f) can be written using Equation (2) as

r 40 . . I
Q) =Y Naiy(t -7, - 8)) (3)
j:]

where the set of values {/\'} and {Gi} are samples of the corresponding random variables.

Qur analysis now turns to the 1mportant problem of prediction. Assuming a hypothetncal storm event to
occur at the siudy site, resulting in the rainfall PD (7) and the plot Ry runoff, g2 (1), what would be the
estimate of runoff at the stream gauge? Because we are in a prediction mode, the values for each ,\
and 6‘-) are unknown for j=1,2,...,40, which are samples of mutnally dependent random vanables
dlstrlbuted as [A;] and [6], respectlvely Then our estimate for runoff at the stream gaunge is the stochastic
process [Qg (1)] where

[Q?(t)]—z (=7~ 18)) (4
i=
In Equation (4), it is understood that the various distributions {\}; {63 j=1,2,...,40; [8],
j=1,2,...,40} may be all mutually dependent. Also, the ‘measured’ g (¢) is used to develop [Qg ()] to
snnphfy the presentation; the F [P‘D (8)] could also have been used.

Stochastic integral equations in rainfail-runoff modelling

The work of Hjelmfelt and Burwell (1984} is recast into an idealized situation where our study catchment,
R, can be subdivided into m equally sized small subareas, R;,j = 1,2,...,m, with each subarea being nearly
identical in its rainfall--runofl properties. Additionally, at the rain gauge site another such small subarea,
R,, .1, is specified and monitored so that for each storm event, 7, the rainfall and runoff from that subarea
are both measured (assume the rain gauge is placed in the centre of the subarea) — that is, for each storm
event, i, we obtain the data P, (l) and e,(), which are the measured rainfall and effective rainfall data,
respectively, from the rain gauge site (see Flgure 1). We assume that all subareas satisfy the cited Hjelmfelt
and Burwell (1984) similarity criteria.

The effective rainfall distribution over subarea j, for storm i, is noted by &, /(). Assuming that for storm i
there are characteristic travel times for translation channel routing, the runoﬂ' hydrograph at the stream
gauge, Q,(7), equates to the m-subarea contributions by

0s(1) = Qn() = Eq;'(r - 1) (5)

where 7' is the sum of the characteristic travel times for all channel links which connect subarea j to the
catchment R stream gauge; and Q,,(¢) is the m subarea rainfall-runoff model estimate of runoff for
storm event i, We now expand on the elements used in Equation (5).

Subarea effective rainfall, ef {t)

Subarea j effective rainfall, ¢/(7), is unknown because there is neither a stream gauge nor rain gauge in Ry,
Assuming that ¢/(7) can be written as a linear combmatmn of translates of the available data e,'(f) gives

o) = i:/\}ke;(t 6% (6)
k=1
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By a change of variables

. b N

G0 = [|_ ee=9 3 Nisfts - 0hds ©)

= k=1
Combining Equations (5) and (9) gives the Q. (¢) estimate for the runoff hydrograph at the stream gauge

_ LISV il .

0n) =Y | _ el =53 Musls B — ) s (10)

j=19= k=1
J HE) ZZ)\},,qbf(s—@}k—v:ii)ds (11)

f=lk=1

Stochastic integral equation formulation
Equation (11) can be written as a stochastic integral equation

041 = 0i(0 = _ elfe-9m'(9)as (12a)
where from Equation (11)
7 =305 Nef(s — 8 — 1) (12b)
J=lk=1

In Equation (12), '(s)is a transfer function, for storm i for the entire catchment. Consequently, given a set
of storm effective rainfalls, {eé(t)}, there is an associated set of realizations, {5‘(s)}, which not only
represent the several unknown variations in hydraulic response in R [represented in Equation (12b} by
the parameters ¢'(s) and T] but also the several variations in the effective rainfall dlstnbutlon (i.e. the
hydrological response) over R [represented in Equation (12b) by the parameters Ay, 0z, n; ] Because all
of these uncertainties and variations cannot be evaluated without a supply of 1_'a1nfall runoﬁ' data for
each subarea and channel hydraulic link used in Q,,(¢), the modelling output of Q/(¢) must be, in a predic-
tive mode, considered a stochastic process. Given a design (or predicted) effective rainfail distribution at the
rain gauge site of egD (), then the model output is a stochastic process, [Q;°(7)], where

0P(1)] = ] e2(t ~ $)n(s)) ds (13)

where [7(s)] is the stochastic process with realizations developed from Equation (12}. In Equation (13), the
brackets are notation for a random or stochastic process. In Equation (13), [5(s)] is the distribution of
transfer functions developed by inserting the mutually dependent distributions of [M;l, (8], [dyx(s)],
[ril, [7?;] into Equation (12b). The last result is important because even though the 1nd1v1dua] dlstnbutlons
used in Equation (12b) cannot be evaluated (due to the lack of flow data), the effect of the several inter-
dependent random processes are properly represented by the distribution of transfer functions, [n(s)],

used in Equation (13).

Effects of channel routing

In this section, the development leading to the rainfall-runoff models of Equations (11) and (12) is
extended to include the effects of unsteady flow routing due to channel storage effects. Channel routing
effects are generally considered to be important, and this has fuelled the proliferation of rainfall-runoff
models. Let () be the inflow hydrograph to a channel flow routing link (number 1) and O;(¢) the outflow
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For the above linear approximations for storm {, Equations (6), (9} and (18) can be combined to give the
final form for our rainfall-runoff model

” A oo
- 2}:_;(1;,)], J _elt=9) > Nei(s - b — oy ) ds (20)
=14y = k=1

Because the measured effective rainfall distribution, ey(¢), is independent of the model, Equation (20) is
rewritten as

- ;l!)!

Q,f,,(z):L -3 S, 2 e ls — Bk — ol ) ds (21)

where all parameters are evaluated on a storm by storm basis.

We now consider an important extension of Equation (21). Suppose a simple storm classification system
is defined where the effective rainfall distribution measured at the rain gauge, e;(t), can be classified as being
in one of three categories: (1} severe; (2) moderate; or (3) minor. Thus, if e,(¢) is a class 1 storm, we would
expect all channel links to be flowing close to capacity due to high runoffs throughout the catchment. Al
routing parameters are defined as class 1 parameters and

0u = [ elte=9) ZZam, ZA 8} (5 — 8l ~ oy ) ds (22)

where the subarea transfer functions are similarly defined as being class 1 types. (It is noted that the use of
superscript ! indicates values dependent on storm class, and not i = 1))

Suppose, in prediction, we are interested in the probable runoff at the stream gauge for a hypothetical
storm event that is considered to be in storm class 1. Then the estimate of runoff is similar to the results
of Equation (22), except that now we have a distribution of outcomes, represented by the stochastic
process

On (1)} = J; . et~ > ay, S:Wk]@l (s [0/ — afpy, ) ds (23}
= i=1 Iy k=1

where [ k] and [¢ k] are distributions of (possibly mutually dependent) random variables, which are now
assumed to have a different probability distribution depending on the storm ciass.

Stochastic integral representation

The rainfall-runoff model of Equation (23} can be written as a set of stochastic integral equations which
provide a variation in prediction due to the storm class system

0Py = | _ ells—lnlolsds 24

where [n(s) is the stochastic process of catchment transfer functions, associated with storm class 3, when
el 2 () is in storm class 3; and where [{s)]s equates to the totality

B
m

[(s)ls ZZ“U),Z o/ (s - ) — oy, ) ds (25)

=1y

From Equation (24), the effects of the uncertainty in the effective rainfall over R, and the randomness in the
unsteady flow channel routing parameters, are all properly integrated into the [5(s)] realizations, which
reflect the combined mutually dependent distributions of all the considered hydrological and hydraulic
effects. This last result is important because almost all rainfall-runoff models in use today can be written
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Based on the above normalizations, each summation graph, M(s), is identified by the parameter set
Pi = {lag', U}, Y'}. Consequently, each realization, #/(s), is identified by the vector, P), for
i=1,2,...,n, where again n, is the number of elements in storm class (£,}.

The components of the parameter sets can be considered as random variables which are all mutually
dependent. The marginal distributions are developed by plotting the frequency distributions of each
component in the parameter set (see Figure 5). _ ‘

The relative frequency estimate associated with vector, P;, is given by the probability of Pr{P,) where

Pr(Pi) = Pr(lag’, U}, Y% (28)

It is noted that the Pr(P) # Pr(lag))Pr(U)Pr(Y’) as the parameters are not mutually independent.
Similarly, the distribution of realizations [1(s)] in Equation (25) is not determined by letting the various

parameters [,\fk} and [Bfk] vary independently. The [r(s)] frequency distribution properly provides the
inherent variability in tﬁe rainfall-runoff model.
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Figure 4. Definition of § graph parameter Y using 5§ (s) and A£(s)
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Figure 6. Frequency distribution for the estimate of peak flow-rate ap]

distributions shown in Figure 5, according to the mutually dependent probability of occurrence given by
Equation (28). By scanning the entire set of [n(s)], realizations developed for storm class (&), the g,
discrete frequency distribution is constructed.

ESTIMATING UNCERTAINTY IN RAINFALL-RUNOFF MODELLING ESTIMATES

Rainfall-runoff model errors

Let M be a deterministic rainfall-runoff model which transforms rainfall data for some storm event, i,
noted by Py(z), into an estimate of runoff, M'(z), by

M : PY(£) = M'() (32)

where 1 is time. In our probiem, rainfall data are obtained from a single rain gauge. The operator M
may include loss rate and flow routing parameters, memory of prior storm event effects and other
factors.

Let Py(1) be the rainfall measured from storm event i and Q}(f) be the runoff measured at the stream
gauge. Various error (or uncertainty) terms are now defined such that for arbitrary storm event i

Qg (f) = M'(t) + Ej (1) + E}(t) + ENt) = M' (1) + E'(1) (33)

where E/(2) is the modelling error due to inaccurate approximations of the physical processes (spatially and
temporally); E;(t) is the error in data measurements of Pj(#) and Q(z) (which is assumed hereafter to be of
negligible significance in the analysis); E,(f) is the remaining ‘inexplainable’ error, such as due to the
unknown variation of effective rainfall (i.e. rainfall less losses; rainfall excess) over the catchment,
among other factors; and where

E'(t) = En(0) + Eq(1) + E/(2) (34)

Because £°(¢) depends on the model A used in Equation (32), then Equations (33) and (34) are combined
ag

Qs(r) = M'(8) + Efs(0) (35)

where E};(¢) is a conditional notation for E(z), given model type M.
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Consequently, our final model structure can be used to study the effect on the runoff prediction (at the
stream gauge) from arbitrary model M.

Stochastic integral equations and uncertainty estimates

The distributed parameter rainfall-runoff model of Equation (41) provides a useful approximation of
almost any rainfall-runoff model in use today. A stochastic integral equation that is equivalent to Equation
{(41) for each event in the subject storm class is

okl = |

i
s=0

FP(t ~ )in(s)) ds (43)

where now [7(s)]g is the stochastic process representing the various random variations defined on a storm
class basis. (It is recailed that on a storm class basis, the hydraulic parameters of ay) and ay,, and the
;(s), may be assumed to not vary.) In prediction, the expected runoff estimate for storm events that are
elements of the subject storm class is

EIQ4() = |

which is a multilinear version of the well-known unit hydrograph method (e.g. Hromadka ez al., 1987),
which is perhaps the most widely used rainfall-runoff modelling approach in use today.
Then the model M structure of Equation (41), when unbiased, is given from Equation (44), by

FP(1 = )Efn(s)]sds (@4)

MP() = E((Qx (1)) (45)
The total error distribution (for the subject model M) can be developed as
[Eq(6)] = [@5{0] — E{@x(0)] (46)

where all equations are defined on the storm class basis used in the previous equations.

APPLICATION OF THE STOCHASTIC INTEGRAL EQUATION

In our application problem, the model input functional F : P;(t) — F'(1) is specified as simply a yield type
relationship (e.g. Hromadka and Whitley, 1988)

F: Pi(1) — AP4(r) (47)

where X is a constant runoff coefficient typically estimated as a ratio of rainfall divided by runoff, for storm
events in a specified class. The corresponding stochastic integral equation used to relate the rainfall-runoff
data is

iy =] Pii-9mis)ds (38)

In this application, storm classcs are defined according to the 85 centile value of rainfall intensity in excess
of one-half of the maximum five-minute mean intensity, z, and also according to the total rainfall mass
which occurs within three days before the subject storm event. Storm classes are then assembied according
to the characteristic z value, at 0-5 inch increments.

For the study location of southern California, 16 stream gauges and 24 rain gauges were studied for
catchment characteristics. Because of the sparcity of rainfall-runoff data, several catchments are considered
to regionalize the statistical results. All storms considered are assumed to be elements of the same storm
class considered important for flood control, which was found to be the case based on the severity of
each storm event.

For each storm event and catchment, the rainfall-runoff data are used to directly develop the set of
realizations, {#'(s)}. On a catchment basis, the several resulting 7'(s) are pointwise averaged together to
determine an estimate for E[n(s)} for the prescribed storm class, for the considered catchment. Note that
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Figure 9. Normalized summation graph shape factor, ¥, definition

summation graph realizations are normalized and assembled together to form one regionalized distribution
of summation graph realizations.

To describe the data, a ‘shape’ scaling parameter, 7, is introduced by plotting each summation graph
realization on Figure 9 and averaging the upper and lower reading for Y. The regionalized marginal
distribution for the parameter Y is shown in Figure 10. With the normalization process, the variations
in the timing parameter, lag’, and the surmmation graph total mass (j.e. ultimate discharge, U’ ), must be
also accounted, and were assumed to be distributed according to the normal distribution as fit to the
sample data. From these descriptor variables, each 7'(s) is represented, in summation graph form,
by the parameter values of {lag', U’, Y*}.

Based on the model M deﬁnqd by Equations (47) and (48), a severe storm of 1 March 1983 (which as not
used in the development of ['(s)]) is analysed for the Athambra Wash stream gauge. The outcomes of
[O5(1)] are plotted along with the recorded stream gauge data in Figure 11. From the figure, the
uncertainty in the model prediction of (@ (1)) is significant and should be included when analysing an
operator 4 on the runoff predictions.

In the use of the above rainfali—runoff model, M °(#) is given by

M0 = EIQEO = A PE(t~9Eln(s)]ds (49)
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distribution of stochastic outcomes (of modelled runoff hydrographs) to the standard catchment unit
hydrograph, given on a storm class basis. The work effort involved in developing a stochastic integral equa-
tion formulation of a rainfall-runoff model is essentially the same as in using standard unit hydrograph
techniques, except that several equally likely computational runs are made (one for each transfer function)
instead of just the single expected value unit hydrograph transfer function.
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