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AN EXPANSION OF THE CVBEM MATRIX SYSTEM

T.V. Hromadka II
Deparmment of Mathematics, California State University, Fullerton, CA 92634, USA

A matrix system expansion is developed for the complex variable boundary element method (or CVBEM). The
expansion includes identification of matrix components that contain the approximation error due to basis function
approximations. Bounds for error are developed by use of Taylor series expansions of the problem solution from

each nodal point in the mode! discretization.

1 Introduction

The cotiplex variable boundary element method, or CVBEM, has been
the subject of several papers and books (e.g. Hromadka & Lai;?
Harryman et al.,' Hromadka’). The basis of the CVBEM is the use of
the Cauchy integral equation to develop approximations of two-
dimensional boundary value problems involving the Laplace or Poisson
equations.

An advantage of the CVBEM is the property that the resulting
approximation function, &(z), is analytic in the simply connected
domain, £2, and continuous on the simple closed problem boundary, I™.
Thus, &{zy=4(z)+ii(z), where $(z) and Q(z) arc the approximation
function potential and strearn functions, respectively, and each satisfy
the Laplace equation in €. The general CVBEM technique is briefly
described in the following discussion.

Leto(@=d(x)+iw(x,)) be a complex variable function which
is analytic on "G, where Q0 is a simply connected domain enclosed
by the simple closed boundary I" (Fig. 1). We define &(x,y} to be the
state variable and y{x,y) the stream function, where ¢ and w are two-
dimensional real valued functions. Since @ is analytic, ¢ and y are
related by the Cauchy-Reimann equations
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and thus satisfy the two-dimensional Laplace equations in £, namely
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The Cauchy integral theoremn states that if we know the value of the
complex function o on the boundary [, and if @ is analytic on [LQ,
then @ is given for any z in Q by
I [w(@)d¢

w(e) = 5z [ TR, 4T @
The CVBEM forms &, an approximation of o, using known values of
either § or y on the boundary T, and uses the Cauchy integral (3) to
determine approximate values for w on QUI. The approximator, &, is
a two-dimensional analytic function in € that can be differentiated,
integrated, or otherwise manipulated to obtain higher order operatar
relationships (Hromadka®),

) Letthe boundary I be a polygonal line composed of Vstraight
line segments and vertices. We define nodal points with complex

z &0,
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coordinaies z, F=L..,monT suchthat m>V. Nodal points are located
at each vertex of I and are numbered in a counter-clockwise direction.
Let I, be the straight line segment joining z, and z,, so that

m
I'= U T §
ji=1
wherez_, =z,. Thus, m boundary elements, I', are defined on T, where

[, connects nodal coordinate z_ and z, (Fig. i). The CVBEM defines
a continuous global trial function, G(z), by

G(z) =Y Nj(2)($; + i), z€T
i=1

(4)

where, for a piecewise linear polynornial global trial function, and
J=1,...m, N(2) is given by
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and where § and W, are nodal values of the twoconjugate components,
J J . . . . .
evaluated af z. An analytic approximation is then determined by

o= L [ QK

Q
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zgl (6)
Since usually only one of the two specified nodal values (¢J,\TJ}.) is
known at each z, J=1,...,m, values for the unknown nodal values must
be estimated as part of the CVBEM approach to developing an analytic
approximation function. The CVBEM develops a matrix system for
use in solving these unknown nodal values (see Hromadka & Lai®),
solves the resuitant matrix system, and uses these nodal value estimates
along with the known nodal values in defining (/:\)(z).

)

2 Matrix system development and analysis

In order to develop the CYBEM approximation function, &(z), defined
on QuUT, the unknownnodal values of ﬁ)(zj) need to be determined. For
mnodes, a system of m complex valued linear equations are developed
by taking the Cauchy principal value of eqn (6) evaluated at each node
J; that is,
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Figure 1: Problem domain and boundary,
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In solving for the fh f=12,..,m, complex numbers are
determined such that
f:.i'] = E Cjkf-_l-’k (8)

where C, are complex numbers determmed by integrating eqn (7) for
each tnal function N (C) used in G(5) and also where C, is with respect
to the term ({z) in the denominator of eqn(7). Itis rioted that the C,
values are complex constants that depend on the trial function usecf

N{), the nodal point locations, z, and the geometry of T'; that is, the
9 values do not depend on the riodal values of @(z,). Ineqn(8), the
w, is the nodal point value used in eqn (7) at node

Expanding eqn (8),
@j = ¢; + it D ek + B ) (Be + i)
k=1
= ;(ajkﬁgk ~ Bikti) ©)
+ iZ(a,-HBk + Bjdr)

k=1

where Cjp = ;i + i0;k, and @y = br + ithx;
i=+v-1; and ajr and fj

are real constants.

For the a.na1y31s of approximation error, we reconsider the
above equations given new trial functions N, () with the special
attribute that the N, *(C) are ‘perfect” in the sense that

x 10
() = N (O = () 1o
i=t
forall CeT’, and in eqn (10) necessarily @ =w, for all nodes /. For this
ideal case,
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where T is notation for the Cauchy principal value; and o, and f, are
new real constants that depend on @(£) as defined on T Note that the
nodal values used in eqn (11) are exact, whereas the nodal values used
in egn (9) are approximate.

In matrix form, for m nodeson T,

{¢k]‘mx1 = {a;k]mxm{‘i’k }mxl + [-B;k]mxm{wk}mxi (12a)
{%x Jmnr Zta;k]mxm{¢k}mx1 + [ﬁ;k]mxm{ék}mxl (12b)

where {¢,} and {y,} are column vectors of the exact nodal values w,;
[e cland [B J are square matrices composed ofthe o, and By terms from
eqn (11}, rcspccttvcly

Ineqn (12), either eqn {12a) or (12b) can be used to determine
unknown nodal values (recall, only one unknown nodal value occurs
in the typical boundary value problem under consideration).

In comparing eqns (9) and (11), both sysiems of equations
utilize the known nedal point boundary condition values. Theunknown
component, however, is completely dependent on whether ¥ (£) or
N} (L) is used. Obviously, ¥, /(C) is used in practice (and hence the ¢t
and B are constants mdependcnt ofthe problem boundary condmonsj
The érror in estimating the unkown nodal point component, for each
node then is a result of the difference between N({) and N, (C) which
is fully represented by the differences between oy and o, or [3 and 3.

For a given boundary value problem, let

Teo= afp - ag (133)
E?k = B — Bir (13b)
Then from eqns (12a) and {12b), a new matrix expansion is

{o} = [ajk]{¢k}+[-ﬁjk]{¢k}
EZ o} + [-EL {4} (142)

{#e} = [ogel{9e} + [Bixl{oe}
+ BRI} + [ EL {6}

where mxm matrices [ £5] and {E| "] depend on the given boundary value
problemsolutiononT, and where the exactnodal values of ¢ +iy, result
due to use of the ideal ¥, () basis functions.

Ineqgns(14a) and (14b)itis seen that all error of approxxmatlon
is due to the contribution of matrices [E3] and [E] F. To examine these
later matrices, we will assume that the Solution fo the boundary value
problem w(C), is analytic on a larger simply connected region €2 such
that CxuT'c=(2. Furthermore, define acircle R ateachnodal pointjsuch
that the center of RJ Isz, and the radius r isthe larger of the distances Ezj -

z,|and |zﬁ -zJ; that :s,r—ma.x{|zJ Z. [zr z|} Then 2is also assumed
to contaif each R (andf hence the dlSC interior of each R).

Because e}(z) is analytic on (3, then o(z) can be expanded asa

Taylor series at cach node, T(z), where the radius of convergence of

(14b)

Figure 2: Discretization.
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7;.(7.) is greater than r of circle Rf {by assumption of w(z) being analytic
over £2). Then for node, the Taylor series expansion of (¢} for {eT,
centered at z, is

L) =wi+

where n{{) is the Taylor series remainder term given by
z]) w(u) du
16
GE [ oty o

where the contour integration of eqn (16} is on the circle R, (centered
at z), u is the local coordinate on R; and CEI"} orl" .

A bound for the Taylor series rcmamdcr %), can be
developed. Let M be the maximum value of w(z) over Q (such a
maximum exists by the Maximum Modulus Theoremy}, then from egn
(16),

(¢ —z;) +n(¢) (15)

2
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where r is the radius of circle R and r=(C- -z, |
Simplifying,

(O €

where necessarily 0<r<
On 1" for CEF

BQ) = T0)-C(0)
= (ot S €z 4a(0)

43

Mr?

(18}
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From eqns (18) and (19), as the maximum distance between nodes
decreases, then r—0 for all j and therefore |n(L)|—=0, giving a
convergence bound for the CYBEM matrix system.

3 Conclusioas

A matrix system expansion is developed for the complex variable
boundary element method (ot CVBEM). The expansion includes
identification of matrix components that contain the approximation
error due to basis function approximations. Bounds for error are
developed by use of Taylor series expansions of the problem solution
from each nodal point used in the nodai model. The resulting error
bound is used to demonstrate convergence of the approximation to the
exact solution as the distance between nodes en the probiem boundary
decreases.
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