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The complex variable boundary element method (CVBEM) is a numerical approach to solving boundary
value problems of two-dimensional Laplace and Poisson equations. The CVBEM estimator exactly
solves the governing partial differential equations in the problem domain but only approximately
satisfies the problem boundary conditions. In this paper a new CVBEM error measure is used in aiding
in the development of improved CVBEM approximators. The new approach utilizes Taylor series theory
and can be readily programmed into computer software form. On the basis of numerous test appli-
cations it appears that use of this new CVBEM error measure leads to the development of significantly

improved CVBEM approximation functions.
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1. Introduction

The objective in using the complex variable boundary
element method (CVBEM) is to approximate analytic
complex functions. Given that @ is a complex function
which is analytic over a simply connected domain {}
with boundary values () for { € I' (I' is a simple
closed contour), then both the real (¢) and the imag-
inary (¢ parts of @ = ¢ + i} satisfy the Laplace
equation over {}. Thus two-dimensional potential flow
problems can be approximated by the CYBEM, in-
cluding steady-state heat transport, soil water flow,
plane stress, and elasticity.

The development of the CVBEM for engineering
applications is detailed by Hromadka and Lai.! The
CVBEM is a boundary integral technique, and con-
sequently, a literature review of this class of numerical
methods can be found in works such as the one by
Lapidus and Pinder.” The Laplace and Poisson equa-
tions have been solved numerically with a high rate of
convergence by the finite element, finite difference,
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and real variable boundary element methods.? How-
ever, issues regarding conditioning of the stiffness ma-
trix for cases of small discretization remain open. The
CVBEM results in a well-conditioned matrix system
that may provide an alternative to highly discretized
conditioning problems.

In this paper the CVBEM is expanded as a gener-
alized Fourier series but introduces the use of Taylor
series defined on each boundary element, expanded
with respect to each nodal point. Boundary conditions
are approximated in a ‘“‘mean-square’’ error sense in
that a vector space norm is defined which is analogous
to the /» norm and then minimized by the selection of
complex coefficients to be associated to each nodal
point located on the problem boundary, I'. For prob-
lems in which the boundary condition values are values
of a function analytic on {} U I' the CVBEM approx-
imation function converges almost everywhere (ae)
on .

The CVBEM generalized Fourier series approach
will be developed before the development of the nu-
merical technique is presented. To keep the paper con-
cise, the development of the CVBEM approach, the
definition of the working vector spaces, proofs of con-
vergence of the generalized Fourier series expansion,
and the proof of boundary condition convergence are
all briefly presented.

© 1992 Butterworth-Heinemann
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In this paper a new CVBEM error measure is used
in aiding in the development of improved CVBEM ap-
proximators. The new approach utilizes Taylor series
theory and can be readily programmed into computer
software form. This new approximation error evalua-
tion technique provides a convenient-to-use measure
inimproving CVBEM models by further discretization.

1.1. Definition of working space, W,

Let (2 be a simply connected convex domain with
a simple closed piecewise linear boundary I' with cen-
troid located at 0 + 0i. Then in this paper, @ € Wy
has the property that o(z) is analytic over § U T,

1.2. Definition of the function o

For @ € W, the symbol ||w|| is notation for
Lz

ol = [ f (Rewydp + [ (mo)p d.u]
| S ry

where both I'y, and I', are a finite number of subsets
of T' that intersect only at a finite number of points
inl.

The symbol ||w|, for w € W, is notation for

1/p
il = | [loorau| o=
r

Of importance is the case of p = 2:

172
e = [ | (Rewp + Im ) duJ
r

1.3. Almaost-everywhere (ae) equality

A property that applies everywhere on a set E ex-
cept for a subset E’ in F such that the Lebesgue mea-
sure n{E’) = 0 is said to apply almost everywhere
(ae). Because sets of measure zero have no effect on
integration, almost-everywhere equality on I indicates
the same class of element. Thus for o € Wy, [w] =
{w € Wgq:aw(l) are equal ae for { € I'}. For example,
[0] = {w € Wq:w(() = 0ae, { € I}, When understood,
the notation [ ] will be dropped.

2. Mathematical development

The H? spaces (or Hardy spaces) are well documented
in the literature.? Of special interest are the E*({}) spaces
of complex valued functions. If w € E3({}), then w
satisfies the conditions of the definition of working
space on Wq, where |l(8{)|; is bounded as 6 — 1.
Finally, if @ € E*()), then the Cauchy integral rep-
resentation of w(z) for z € € applies. It is seen that
W, C EX(O).

2.1. Theorem (boundary integral representation)
Let w € Wi, and z € (1. Then

w({) di

w(Z):E}r ‘-z

Proof
For w € Wy, then w € E%({}), and the result follows
immediately.

2.2. Almost-everywhere (ae) equivalence

For w € Wy, functions x € Wg equaltowaeon I’
represent an equivalence class of functions which may
be noted as [w]. Therefore functions x and y in W, are
in the same equivalence class when

flx"y!du:()
r

For simplicity, w € Wy, is understood to indicate [w].
This follows directly from the fact that integrals over
sets of measure zero have no effect on the integral
value.

2.3. Theorem (uniqueness of zero element in Wg)

Letow € Wy and ¢ = Daeonl; and ¢ = 0 ae on
I'y. Then (w,w) = 0> w = [0].

Green’s theorem states, let F and G be continuous
and have continuous first and second partial deriva-
tives in a simply connected region R bounded by a

simple closed curve C. Then
f J’[ (aZG 626)

fF(a(’dx - —dy)
<
dFaG  oF oG
==+
(ax dx oy ay)] d dy

Let ¥ = ¢, G = ¢. Then

f¢g§dr= f¢v2¢a‘9
T 0
EREE

[o22ar 192+ 4100
r 4]

But V2¢ = 0 in . Thus

But (w,w) = 0 implies ¢ = 0onl,and y = O0onl,
(hence ay/os = 0 = dp/on = 0), and

£¢¢ndr+f¢¢ndl‘= £(¢3+ 2 d

7 o /

0 0
Thus (w,w) = 0= ¢, = 0 = ¢, on ().
Thus ${x,y) is a constant in £}. But
lim ¢=0>¢=0

—={€ly

Similarly, ¢ = 0. Thus «» = [0].
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2.4. Theorem (Wq is vector space)

W, is a linear vector space over the field of real
numbers.

Proof

This follows directly from the character of analytic
functions. The sum of analytic functions is analytic,
and scalar multiplication of analytic functicns is ana-

lytic. The zero element has already been noted by [0}
in theorem 2.3,

2.5. Theorem (definition of the inner product)

Let x, v, z, € Wq. Define a real-valued function
(x,y) by

(x,y) = fRexReydp,+ flmxlmydp,

Iy

Then { , ) is an inner product over Wo,.

Proof

It is obvious that (x,y) = (y.x); (kx,y) = k(x,y) for
krealy (x + v,2) = (x,2) + (¥,2); and (x,x) = x| = Q.
By theorem 2.3, (x,x) = Q0 implies Re x = 0acon I,
and Imx = 0aeon [, and x = {0) & W

Three theorems follow immediately from the above,
and hence no proof is given.

2.6. Theorem (Wq, is an inner product space)

For the defined inner product, Wy, is an inner prod-
uct space over the field of real numbers.

3. The CVBEM and W,

3.1. Definition of A
Let the number of angle points of I' be noted as A.

By a nodal partition of I, nodes {P;} with coordinates
{z;} are defined on I such that a node is located at each
vertex of I' and the remaining nodes are distributed on
TI". Nodes are numbered sequentially in a counterclock-
wise direction along . The scale of the partition is
indicated by I, where I = max |z;,, — z]. Note that
no two nodal points have the same coordinates in i'.

3.2. Definition of I;

A boundary element I; is the line segment joining
nodes zyand z;, s I; = {z: 2 = z(8) = z,(I — O) + Zat,
0=t = 1}. (Note for m nodes on ' that 2,1 = 2.}

3.3. Discretization of I into CVBEs
Let a nodal partition be defined on I'. Then

where m is the number of complex variable boundary
elements (CVBEs).
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3.4. Definition of N;({)
A linear basis function N;{{) is defined for { €T by

¢ - Zj—l)/(zj = Zj-1) (el
N = S (@1 — Ozier — 7)) (el
Q (EL; VI

The value of N,(¢) is found to be real and bounded as
inclicated by the next theorem.

3.5. Theorem

Let N;(¢{) be defined for node P; € I'. Then ¢ =
N = 1.

3.6. Definition of G,.({)

Let a nodal partition of m nodes {P;} be defined on
I' with m = A and with scale /. At each node P;, define
nodal values @; = &; + i;, where ¢; and ¥; are real
numbers. A global trial function G,,,(¢} is defined on T
for{ < T by

G = D N,
i=1
3.7. Theorem

From definition 3.6, G,.(¢) is the sum of integrable
continuous functions, and hence (a) G,,({) is contin-
uous on I' and (b) for w({) € Wq, w(f) € LAT).

3.8. Discussion

As aresult of w(¢) € LXI), then w({) is measurable
on I', and for every € > ( there exists a continuous
complex-valued function g(¢{) such that

feo( &) - €Ol < €/2

Choosing G,,({) to approximate g({) by
IGm(2) — g2l < €/2

then

(@} — Gl Dy
<Jlexd) — gDl + Ngd) — G < €

The CYBEM approximation function, &,,(z), 1s de-
veloped from G,,(z) for m nodes on I by

o) = = [C=D9 g (1)
27111_ {—

where the @, values used in G,,{({) are given by w; =
w(Z_;), w € Wﬂ.-

3.9. Theorem

Let w € Wy, For ¢ > 0 there exists a G({) such that
floldy — G(DIh < e

Proof follows from the discussion in section 3.8.

3.10. Theorem

Let w € Wg and z € (). For every € > 0 there ex-
ists a CVBEM approximation é&,,(z) such that la(z) —
& (2| < e
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Proof
Letd = min |[{ — z|, { € T". Then for a global trial
function G,,.({) defined on T,

1 " o
|(2) = ()] = '2—. | () ~ Gnid)] dz'
kil

1
=l — Galy

2 i

Choosing G,, (see section 3.8) such that ljo — G,/ <
2 de guarantees the desired result.

4. Taylor series expansions on CVBEs

4.1. Construction

Let @ € Wy,. Then e is analytic on an open domain
O such that & U T is entirely contained in the interior
of 04, Let T'* be in £}* such that T* is a finite length
simple closed contour that is exterior to 2 U T". Then
w is analytic on I'*, and by the maximum modulus
theorem,

)| =M zET* (2)
for some positive constant M.
Also,
|w(z)| = M zeQur (3)

Define a nodal partition of m nodes on I'. Complex
variable boundary elements are defined to be the straight
line segments [; = [z;, z;+,] where, for m nodes,
Zns1 = z;. At the midpoint Z; = 3z + z;,,) of each
I;, expand w(z) into a Taylor series T;(z — z). Each
T{z — 7)) has a nonzero radius of convergence R;, and
Ty(z — Z;) = w(z) in the interior of circle C; = {z:jz ~
7] = R}. The C; all minimally have radii R, ‘where R =
min |[{; — £»| such that {, € T and {, € I'*. Descretize
I'into m CVBEs, I, j = 1,2, ..., m, such that the
length of T, || = 2L/m where L= Jr|d¢|and 2Lim <
R, and the other conditions regarding placement of
nodes at angle points of I" are satisfied.

4.2. Taylor series expansion
For{ €T,
T;({ — z) = PV () + E (D) (4)

where N is the polynomial degree, and from Cauchy’s
theorem,

N+1
{— 7 wl(z) dz
B = me (z - E,) z— 4 ©)

J

The magnitude of |[EN({)| is, for every j,

1 1£{—-73%;
N - J
£ @l 2wz — I

N1 max |ew(z)[27R

min |z - {]
ZEC, (€l (®)

But
g__ z N+IS(L/m)N+l
Z-% R

and thus

1/ LA\Y""M2aR L\NT!
N _f —— = _—
I @l=7 (mR) r2 M (mR)
Q)]

which is a result independent of j. Note that as the
partition of T into CVBEs becomes finer, i.e., max
;i — 0, then m — « and |[EN({)| — 0. Also, as the
order of the Taylor series polynomial increases, N —
, and recalling that (L/m) << R/2, then |[EN()| — 0.

4.3. CVBEM error analysis
From Cauchy’s theorem, for z € Q,

_ 1 fef)dd
W2 = 2 T ®)
On T, let
ol) = DX (€T ©)

J=1

where X; is the j-element characteristic function (i.e.,
X; = 1for { € I';; 0, otherwise). Then for z € {},

2 X1y dg

— | iz
(@) 27 4 {—z

“ (D dg
E Zm iz

(10)

For T({) = PM{) + EMJ),
L (Ed L
w(Z)_ZwiJEJ’ {—z 2 =1+ {
= ay(z) + En(z) (11

The @x(z} is the CVBEM approximation based on
order N polynomials, where it is understood m nodes
are used. The error, Ex(z), is evaluated in magnitude
for z € ) and using (12) to be

w2 [

-1 (m)(max I A)max |EX )]

% fﬁw(i)di

|EN(Z)I =5

2m min|{ — z|
2L L N+1
)G el )
D
_2LM ( LN\MM
) (mR) (12)

where D = min |{ — z|for { €T
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Recalling that (L/im) < R/2, |Ex(z)] — 0 as either
m — x of N — w. Thus as the number m of CVBEs
increases, or the order of the interpolating polynomial
N increases, error |En(z)| — 0.

44. CVBEM numerical analog

Asz— [ €T, forz € Q, then w(z}) = () = TH{{).
The CVBEM procedure is to set in a Cauchy limit
sense,

_ < (T4
Lo = 2m‘§1f [-z (1

as z— I' while z € ().
For order N Taylor series expansions the CVBEM
sets in the Cauchy limit

_ &P dg
@ ‘2m’1§f {—z 1)

as z — |" while z € (1.
If collocation is used, the numerical approach is to
set!

PYE) = olz) (15)

for each nodal coordinate z; € ;.
If a least-squares approach is used, the numerical
approach is to minimize*

iPF) -] ¢ET
Letting

J=12, .. .,m (1§

Gl = 2 N,
=1

where it is recalled ®; = o(z),

lim G({) = ()
=0

and

d
wl({) = lim Glorde g zEN 17
=0 Zm L~
where [ is the scale of the nodal partition of I

5. Implementation

In general, one does not have both ¢ and ¢ values
defined on I" but instead has ¢ values defined only on
a portion of T', specified as I'y,, and ¥ values defined
only on the remaining portion of I', I'y, where I', U
I', = I'. That is, we have a mixed boundary value
problem.

The numerical formulation given in the above equa-
tions solves for the unknown i values on I'y, and the
unknown ¢ values on I'y. Once the unknown ¢ and
values are estimated, denoted as ¢ and ¢, then the
global trial functions are well defined and can be used
in &(z) estimates for the interior of ). The possible
variations in such boundary condition issues are ad-
dressed by Hromadka and Lai.’
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In this paper we focus upon the Taylor series ex-
pansions in each I, as the interpolation polynomial
order, N, increases and also as the number of CVBEs,
m, increases.

Thus the numerical approach used in the CVBEM
computer program formulation is outlined by the fol-
lowing steps:

1. Discretize the problem boundary I' (which is a finite
union of straight line segments) into m CVBEs by
use of nodal points distributed on I" where minimally
a node is placed at each corner of T'; i.e., m = A,

2. For N = 1 a linear interpolating polynomial is de-
fined on each I',. For N > 1 a higher-order poly-
nomial expansion is used, and consequently, ad-
ditional interpolation nodes are defined in each I';.
For example, for N = 2 a midpoint node is added
to each Iy; for N = 3, two additional nodes are
defined in the interior of each 1.

3. Given N, a matrix solution prowdes the coefficients
needed to define interpolating polynomials for each
CVBE, using splines.

4. The unknown nodal values are estimated by means
of collocation or least-squares error minimization.

5. Using the estimates for the unknown nodal values,
a CVBEM approximation @(z) is well defined for
estimating w(z) values in the interior of .

6. CVBEM error is evaluated by comparing &(z) and
w{z) with respect to the known boundary values of
w(z) on I'; that is, compare ¢ to ¢ on I'y, and com-
pare sto ¢ron I';. (From the previous mathematical
development, if ¢ = ¢ onT'yand ¢ = don Ty,
then @(z) = w(z) for all z € 0, if o € W)

7. After @ and @ are compared as to boundary con-
dition values, then the CVBEM program user can
decrease the partition scale (i.¢., increase the num-
ber of nodes uniformly} and/or increase the CVBE
interpolating polynomial order, N. The modelling
goal is to increase (m,N} until the boundary con-
ditions are well approximated by the CVBEM a(z).
It is recalled that regardless of goodness of fit of
@(z) to the problem boundary conditions, the com-
ponents of &(z), i.e., the functions $(z) and §(2)
(where alz) = #(z) + ip(2)) exactly satisfy the
Laplacian V2¢ = 0 and V2§ = 0 forall z € ). Thus
there is no error in satisfying the Laplacian equation
in ). This feature afforded by the CVBEM is not
achieved by use of the usuval finite element or finite
difference numerical techniques, which have errors
in satisfying the problem’s boundary conditions as
well as errors in satisfving the flow field Laplacian
in £2.

8. A new approach to evaluating CVBEM approxi-
mation error is to examine the closeness between
values of the interpolating polynomial in cach CVBE,
and the CVBEM a(z) function, for z in I';. That is,
examine in a Cauchy limit |[PY({} — &)L, L€ T,
for all CVBE I',. As ||[PM(¢) — @D, — 0 (.e., by
increasing m and N) for all j and all { € T}, then
necessarily, &(z) — w(z) for all z € O, if w(z) € W,

9. The choice to increase m or N is made by increasing
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both m and N in those boundary elements that have
the most approximation error of [PN({) — &() for
¢ € T,. In this way, @(z) approximations improve
in accuracy without excessive additional compu-
tation. Generally, three or four attempts in devel-
oping &(z) functions may be needed for difficult
potential flow problems, each successive CVBEM
approximator being based upon the prior attempt
but with localized increases in m and N where ap-
proximation error was largest.

6. Application

A CVBEM computer program was prepared that in-
cluded the ability to increase the number of boundary
elements by discretizing specific elements into more
elements, and also to increase the interpolating func-
tion polynomial order, N, within specific boundary ele-
ments. The program included in its output the com-
putation of |P¥(¢) — (), { € T, for each boundary
element.

For each CVBEM attempt, N is increased by 1 and
the boundary element halved in length (to produce two
elements) that had the largest values of [PY(¢) — ().
The modelling process continues until a reasonable
@(z) fit to the problem boundary conditions is achieved.

Applications demonstrating the CVBEM to numer-
ically solve boundary value problems involving the two-
dimensional Laplace or Poisson equation can be found
in several publications.'-* The focus of this paper is
the presentation of another CVBEM error evaluation
technique that appears to provide a more robust guide
in developing subsequent improved CVBEM approx-
imators than the other techniques in use, such as the
approximate boundary technique,' and the usual eye-
fit comparisons between ¢ versus ¢ on I'y and  versus
wonT,.

In numerous test problems it was found that use of
the |PN() — ()| error to pinpoint localized CVBEM
approximation error provided, in general, a better ap-
proach to improving CVBEM functions than the ap-
proximate boundary approach. The following prob-
lems demonstrate application of the |P¥() — w()i:
error measure technique to locate where additional no-
dal points need to be added to I" in order to develop
more refined CVBEM approximations. In each appli-
cation a mixed boundary value problem is defined by
prescription of either ¢, i, or d¢/on along portions of
I'. The CVBEM is applied to an initial nodal point
distribution along T, and then the error measure is
evaluated for each boundary element. The boundary
clement that manifests the largest value of error is then
further discretized, or the Taylor polynomial order in-
creased by 1 (up to a maximum order of 8 in the pre-
pared computer sofiware). The program user selects,
up front, the order of the Taylor polynomial to be used;
the program conducts the discretization.

For each problem shown the exact solution used to
generate the test problem is given. Initially, nodes are
only defined to be located at the vertices of I'. Also,
a quadratic polynomial is used for each element. There-

after the software generates successively finer CYBEM
estimates, by discretization, by use of the error mea-
sure between PY(4) and w(¢) on I'. The maximal error
E = ||é(z) — w(z)| is then computed for demonstration
purposes, as w(z) is known. Plots of error for 25- and
40-node discretization are provided for each applica-
tion.

To demonstrate the error analysis procedures dis-
cussed above, two mixed boundary value problems are
considered in which analytic solutions are known. A
FORTRAN computer program, based on the complex
variable boundary element method, which allows an
increase in Taylor series polynomial order or an in-
crease in nodal density is used.

For both problems considered, an initial nodal point
scheme of 12 nodes is defined on each of the problem
boundaries. Boundary conditions of specified stream
function or specified potential function values are used
(even though flux type boundary conditions are
straightforward to include). A CVBEM approximation
function is developed based on the initial nodal point
placement, and streamlines are automatically gener-
ated and plotted as solid lines within the problem do-
main (recall the CVBEM develops a function &(x,y)
inside the problem domain, ). For comparison pur-
poses, associated streamlines for the analytic solution
w(z) also are plotted, as dashed lines, within £2.

Because application of the CVBEM necessarily in-
volves problems in which the exact solution is un-
known, one of the two boundary condition function
values is left “‘unknown’” along the problem boundary.
By using the error between the approximated boundary
values and the known boundary values, additional
CVBEM model complexity can be introduced. The
errors computed are the usual integrated root-mean-
square error and magnitude error. Plots of these errors,
as computed along the problem boundary, are included
in the application figures.

Subsequent CVBEM approximations, ultimately
leading to use of 25 and 40 nodes on [', are shown in
the attached figures, along with a comparison of
streamlines between approximation and solution re-
sults, and the error plots. A guartic trail function is
used in the 40-point discretization.

Application A

Solve #¢/axt + 8*¢/ay* = 0 in (), where Q is the
domain shown in Figure /. Stream function values are
specified along the horizontal lines of ', and potential
function values are specified along the horizontal lines
of T, forming a mixed boundary value problem. The
analytic solution used is w(z) = In[(z + Dz — D}
Figures 1, 2, and 3 show approximation results versus
exact values for 12-, 25-, and 40-boundary nodes, re-
spectively. The accompanying figures show magnitude
and integrated root-mean-square error plots along I’
for the boundary values.

Application B
Figure 4 solves the Laplace equation for ideal fluid
flow over a cylinder on the shown domain, 2. The
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CVBEM versus analytic results are compared in Fig-
ures 4, 5, and 6 for 12-, 25-, and 40-node placemeunts,
respectively. Also shown are corresponding error plots
in meeting boundary condition values along I'. The
exact solution is w(z) = z + 1/z. Stream function val-
ues are specified along the arc and also on x =
0; otherwise, potential function values are specified
along I'.

Discussion of results

The two application problems demonstrate using two
commoniy employed error evaluation techniques in
handling approximation error in meeting the problem
boundary conditions. Because the CVBEM leads to
exact solution of the partial differential equation, only
boundary value approximation error exists. The ap-
proach to add CVBEM model complexification by either
more nodes or higher Taylor series order expansions
encompasses fwo viable techniques used in this paper.
The complexification is added, however, where the
boundary condition approximation error is relatively
large.

Because the CVBEM develops a two-dimensional
approximation function, precise flow nets can be de-
veloped inside the problem domain, which can be com-
pared to known problem solutions when available. For
example, Figure 7 shows a plot of stream function
values for Application A, while Figures 8 and 9 show
25- and 40-node CYBEM approximations, respec-
tively. Figure 10 shows Application A, a state variable

Figure 5. Agpplication A with 25 nodes

it Srasian Cariast

Figure 7. Stream function surface plot, In [{z + 1)/(z — 1)}

plot, whereas Figures 11 and 12 show 25- and 40-node
CVBEM approximations.

The comparability of the approximated flow net to
the solution’s flow net is of importance due to the
need for computing higher-order derivative functions
from the CVBEM approximation function, @(z). For
example, we know that &(z) = ¢(x,y) + fi(x,y) where
Vi = O and V2 = @ inside 2. Then other differential
quantities may be evaluated by directly differentiating
@(z) (this differs from domain discretization techniques

Appl. Math. Modelling, 1992, Vol. 16, March 121
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Figure 8. Stream function surface piot, 25-node approximation,

Inl{z + 1)/iz — 1)

Figure9. Stream function surface plot, 40-node approximation
In[{z + 14z —~ 1)]

Figure 10. State variable surface plot, In [(z + 1)1z — M
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Figure 11. State variable surface plot, 25-node approximation,
Inl{z + 1)/{z — 1]

Figure 12. State variable surface plot, 40-node approximation,
nllz + 14z - 1)

that use interpolation functions in the problem inte-
rior), resulting in a two-dimensional function defined
inside £. For example, given d{z) for a mixed boundary
value problem, [d™@(z))/dz™ is readily computed and
evaluated for 7 € Q.

7. Conclusions

The CVBEM is a numerical approach to solving bound-
ary value problems of two-dimensional Laplace and
Poisson equations. The CVBEM estimator exactly
solves the governing partial differential equations in
the problem domain but only approximately satisfies
the problem boundary conditions. The CVBEM ap-
proximator can be improved by developing a better fit
to the problem boundary conditions. In this paper a
new CVBEM error measure is used in aiding in the
development of improved CVBEM approximators. The
new approach utilizes Taylor series theory and can be
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readily programmed into computer software form. On
the basis of numerous test applications it appears that
use of this new CVBEM error measure leads to the
development of significantly improved CVBEM ap-
proximation functions.

Notation

du  ldf|,¢€T

L length of I"

! max [z;+; — z

N;{({) linear basis function defined on { € T’

P; nodal point j, P, € I'

Ze centroid of {z, = 0 + 0/)

iz} nodal point coordinates defined on I’

I simple closed contour forming the boundary
of O

I; boundary element (line segment) connecting
nodal points with coordinates z;, 7,1

s {zeQiz =8¢l

g,y 'yuUrl, =TandI'y NI, at finite number
of points. Here, ¢ is known on I, and
is known on I'y, where @ = ¢ + fir. Both
I'y and I';, are simply connected contours

) a coordinate reduction factor, 0 << § < |

i,z feTl,zeQ; = Re?for0 = 6§ < 27w {no
two points {; and > on F have the same
angle )

8 branch-cut angle of In; (z — z))

A

number of angle points on T

Rew, o = ¢ + i

Im w

convex, simply connected domain with cen-
troid 0 + Of

Qur

{z € & z enclosed by I's}

s UTs

(¢2 + l',;12)1/2

(_rrd’(Re CU)Z d].l. + frw(lm U))z d].l.)“z

nodal value w(zj), w; = ¢, + iy

CVBEM approximation evaluated at z; € I’

Sl du)?

friRe w)? dp + [r,(Im w)* du
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