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Abstract

The Rational Method equation for estimating peak flow rates for
stormwater runoff is derived from the balanced design storm unit
hydrograph approach presented in the U.S. Army Corps of Engineers HEC
Training Document 15. The new form of the Rational Method equation is
Qp = (oI - ®)A, instead of the well known Qp = (I-9A; or Qp = aClA, instead
of the well known Qp = CIA, depending upon the respective loss function
used in the unit hydrograph effective rainfall model. The above fixed
constant o is found to depend upon the type of unit hydrograph used (i.e., S-
Graph) and the log-log slope of the rainfall depth-duration curve, and is easily
determined by equating to a known unit hydrograph design storm model
peak flow rate result. This new development provides significant foundation
for use of the well-known Rational Method equation in small catchments
where depth-area effects are negligible.



INTRODUCTION

1. Unit Hydrographs

Unit hydrographs (UH) for a catchment may be developed from
normalized S-graphs. The S-graph, which is developed from regional
rainfall-runoff data, is typically expressed by S(4 where /is a proportion
(percent) of catchment lag. Catchment lag is related to the usual time of
concentration, T, by

lag = T, (1)
In several flood control districts in California, vy = 0.80. Then
S =5 (%I’QQ) , where now UH is a function of T, and is obtained from the
c
derivative of 5(t) with respect to time t.

For Tc =1 and catchment area A =1, a normalized UH results, U(t).
For Tc#1 or A # 1, the catchment UH, u(t, T¢, A), is related to U(f) by
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where Uy is a constant. Hereafter, the catchment UH, U(t, T, A), will simply

be written as u(t) where no confusion occurs.

2. Rainfall Depth-Duration Description

Precipitation depth-duration relationships, for a given return
frequency, is generally given by the power law analog,

D(t) = atb 4)



where 2>0 is a function of return frequency, and is held constant for a selected
design storm return frequency; "b" is typically a constant for large regions
(e.g., entire counties); D(t) is the rainfall depth; and t is the selected duration
of time.

Mean rainfall intensity, I(t), is

I(t) = % D(t) = atb-1 (5)

and instantaneous rainfall intensity, i(t), is

i(t) = z% D(t) = abtb-1 = bI(D). 6)

With respect to HEC TD-15 (1984), a balanced design storm pattern (of nested
uniform return frequency rainfall depths) can be described by the time
coordinates t* shown in Figure 1. For a proportioning of rainfall quantities by
allocation of a 6 proportion prior to time tt = 0 (see Fig. 1), instantaneous

rainfall intensities are given by

i(t7) =i7(6t) = i(t) (7)
or
i(t) = i(i) = (L]‘“ i) ®)
e/ @
Similarly,
i*+(t%) = (L)‘” i(t+) ©)
16
3. Peak Flow Rate Estimates from the Balanced Design Storm

Unit Hydrograph Procedure

Let v(t) = v(nTe-t); that is, v(1) is a time-reversed plot of the UH, u(t).
From Fig. 1, and aligning the UH peak to occur at time t* =0,

v(tt) = u(Tp-t+) (10a)

v ({t) = u(Tp‘“t') (10b)



Then the balanced design storm UH procedure estimates the peak flow rate,
Qp: by

NTe-Tp

TP
Qp= [ et(tt) vi(tt) dtt + f e (t) v-(t) dt (11a)
¢ g
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Tp MTcTp
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(11b)

where 1T is the total duration of the UH, and Tp, is the time to peak of the
UH, and Ty, is the time to peak of the UH. In (11b) a "phi index" (or constant)
loss function is used to compute rainfall excess; also, a necessary constraint
imposed is that inT¢) = ¢.

The last term of Eq. (11b) is solved by

Tp NTe-Tp oo
o= f V(Y dt++j ve(t)dr|=¢ I u() dt| = 0AU, (12)
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The first two integrals of (11b) are rewritten by including Eqgs. (8) and (9),

T, To
PH(EF) vH(tY) dit = (L)"'l [ i(t) vH(t*) di (13a)
Jo 10/ J,
(nTc-Tp NTe-Tp
() v(t) dt- = (-1-)"‘1 [ i) v(t) dt- (13b)
Jt’=o 16 t=0

The next step in the mathematical development is to introduce a T-
based coordinate system defined by

g=-L (14)

Then t = sT, dt = T ds.



The balanced design storm instantaneous rainfall intensities, i¥(t*), can
now be rewritten in terms of st {analogous to t*) by

() = (.._1_ b-1 ab(s*Tob-1 = {Is_ o1 i(s+) (15a)
1-6 1-6

and

i) = (%)b'l i(s9) (15b)

Similarly, the vX(t¥) functions can be rewritten in terms of coordinates
st by

T -+
vt = u(Tpt) = ;I{i U (pT—t) = TA U (tp-s*) (16a)
o C C
Vi) = w(Tpt) =AU (TP—TJ’-t—) =2-U (tp+s) (16b)

where tp = Tp/T¢ is a constant for a given S-graph type.

Combining Egs. 11 through 16 gives

Tp

- . b-
Qp = (_L_b A T a(s+)b-1 (L) Ultp-s*) Te ds* + Te
1-0 A T 9
T
j “ a(s7)b1 TL U(Tp+s7) Teds™ - 0AU, (17)
0 C
where it is recalled that it is assumed iMTe) = ¢.
Equation (17) is rearranged to give
Tp
1] Te
Qp=A a(Tob! (L)b U behbl Ultps*) ds*
1-8/ ),
n Tp
+ (el)b' ! j b(s)b-1 Ultpt+sT)ds™ -9 Up (18a)
s}

= A [a(tob! a- ¢Uo) (18b)



where a is constant. For a given S-graph, and a given precipitation region
where exponent "b" is a constant, then tp and | are constants, and Eq. (18) can
be simplified by including (5) as

Qp = [al(Ty) - $Uo] A (19)
where o is a constant for the given S-graph and precipitation region.

For English units, U, = 1.008, which is simplified to be simply U, = 1.
Then,

Qp = [0I(T) - 0] A 20)

In comparison, a Rational Method peak flow rate estimator, for an equivalent
mathematical structure for estimating rainfall excess by a phi-index (constant
loss function), is

Or =[I(Tc) - 0] A (21)

Application

In (20), the single "calibration" constant, a, can be determined by

equating (20) to (11a) for a single peak flow rate estimate (again, observing
iTe) 2 ¢). Several California Hydrology Manuals (see references) use two S-

graphs, one for "Urbanized" and another for "Undeveloped" regions. By
equating (20) to (11a), o = 0.99 for the "Urbanized S-graph and o = 0.86 for the

"Undeveloped"” 5-graph. In these a determinations, the rainfall exponent (b)
of Egs. (4) to (6) was b = 0.55. Additionally, the constraint of NT 2 ¢ resulted in
T¢ limitations of 45-minutes to 180-minutes for 10-year to 100-year storm

events (and typical loss rates of 0.4 inch/hour), respectively.

Constant Fraction Loss Rate

Another popular loss function is to use a constant proportion loss rate
function, to estimate rainfall excess, given by

e(t) = ki(f) (22)



Using (22) in the above development results in the balanced design
storm UH procedure peak flow rate estimator, Qp, given by

Qp = koI(To) A (23)

where in (23), o is the same constant (and same values) used in (20), and the
constraint of inTc) 2 ¢ is eliminated. The corresponding well-known
Rational Method peak flow rate estimator, Qg, is

Qr=kI(T) A (24)

From the above example, Eq. (23) results in

Qp = kI(Tc), for Urbanized areas 3
}
Qp = 0.86 kI(T¢), for Undeveloped areas ) (25)

where again in (25), the rainfall exponent is b=0.55.
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