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The complex variable boundary element method or CVBEM has been shown to
be an effective computational tool for approximately two-dimensional problems
involving the Laplace or Poisson equations. In this paper, the approximate
boundary method {ABM) for error reduction in the CVBEM boundary condition
approximation is further examined. A norm for evaluating accuracy and
approximation improvement is used to assess the utility of the ABM.
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INFRODUCTION

The objective of this paper is to present the results of a
study into the error reduction afforded by utilization of
the approximate boundary method to refining approxi-
mations of the complex variable boundary element
method or CVBEM. The CVBEM is a mathematical
modeling technique that approximates solutions to
boundary value problems, such as two-dimensional
ideat fluid flow and steady-state heat transfer, which
are governed by the two-dimensional Laplace
equation. Given known and usually mixed conditions
at specified points, or nodes, on the boundary of a
singly or multiply connected domain, the CVBEM
utilizes the Cauchy integral formula to produce an
approximation function which is analytic on the inter-
ior of the problem domain, continuous on the problem
boundary, and thus satisfies the two-dimensional
Laplace equation. The approximation function pro-
duced by the CVBEM approaches the analytic solution
as the number of specified nodal values increases and the
boundary element lengths decrease.

THE COMPLEX VARIABLE BOUNDARY
ELEMENT METHOD

Let w(z) = o¢(x,y) + 13(x, y) be a complex variable func-
tion which is analytic on I" U €2, where £ is a simply con-
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nected domain enclosed by the simple closed boundary
I'. We define ¢(x,y) to be the state variable and
(x,y) the stream function, where ¢ and 3 are two-
dimensional real valued functions. Since w is analytic,
¢ and ¢ are related by the Cauchy—Reimann equations

dp Y 0o  OY
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and thus satisfy the two-dimensional Laplace equations
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The Cauchy integral theorem states that if we know the
value of the complex function w on the boundary I', and
if wis analytic on QN 7T, then w on © is given by

T2 C—z '

The CVBEM forms &, an approximation of w, using
known values of either ¢ or ¥ on the boundary I', and
uses the Cauchy integral (eqn (3)) to determine approxi-
mate values for won QUT.

Let the boundary I' be & polygonal line composed of
V straight-line segments and vertices. Define nodal
points with complex coordinates z;, j=1,...,m+ 1 on
T such that m > V. Nodal points are located at each
vertex of [ and are numbered in a counter-ciockwise
direction. Let I'; be the straight-line segment joining z
and z;,, so that T = U;’:]'I"j. Thus, m + 1 boundary
elements, I';, are defined on T', where T, connects

zef, zgl {3)
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nodal coordinates z,,,; and ;. The CYBEM defines a
continuous giobal trial function, G{z), by

mH m+1
Glz) =) Ni(z) =D (o +1w) 4)
i=l J=1
where, for a piecewise linear polynomial global trial
function, and j = 1,...,m + 1, N,(z) is given by
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Ny{z) = ¢  z¢T,ul,, (5)
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and where ¢; and 9, are nodal values of the two con-

jugate components, evaluated at z;. An analytic approxi-

mation is then determined by
l { G(a)da
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If we let g;;,, be the internal angle defined by nodal
point coordinates z;, z;.1, and z,, then for z; in

m-1
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where w; and w; 4, are nodal values at coordinates z; and
Ziy1, and
Zj+1 ~ Zp

Zj—Zo

H =ln +ig; ) (8)

Since usually only one of the two specified nodal values
(6;,v;) is known at each z,, j=1,...,m + L, values for
the unknown nodal values must be estimated. The
CVBEM develops a matrix system for use in solving
for these unknown nodal values (see Ref. 1), solves the
resultant matrix system, and uses these nodal values esti-
mates along with the known nodal values in defining
w(z) in eqn (7).

THE APPROXIMATE BOUNDARY METHOD

Once the CVBEM approximation function is produced,
it is useful to examine and reduce the approximation
error on the problem domain. Since modeling error is
reduced as nodal points are added along the bound-
ary,' a scheme to optimize the addition of nodes with
respect to error reduction is needed. One method of
doing this is the approximate boundary method
(ABM). The maximum modulus theorem’ guarantees
that the maximum error in the approximation function
occurs on the boundary of ihe problem domain. Thus,
the problem of reducing the approximation error can
be attacked as a problem of reducing modeling error
on the boundary T'. The ABM involves the construction
of an appropriate boundary, T, upon which the approx-
imation function achieves the problem’s boundary con-

ditions, which then indicates where additional nodal
points should be placed so that the geometric devia-
tions between the approximation boundary, I, from
the true boundary, I', are small. Generally, the problem
boundary I is a polygonal line which s
well fitted by discretization into straight-line boundary
elements. Consequently, the construction of [ is analo-
gous to plotting level curves of &(z} corresponding to
the problem’s boundary conditions along each bound-
ary element. The additional nodal points are then used
to produce a more refined CVBEM approximation.
_Given  the approximation function &(z)=
#(z) + i(z), we wish to reduce |3(z) — w(z)|, z & Q,
the approximation error in modulus form. Reducing
the approximation error on I' reduces the error on .
The ABM attempts to develop a I that is geometrically
‘close’ to I'. In other words, the goal is to minimize the
maximum normal distance between I and T, with
respect to I'. To determine the approximation bound-
ary at a point z; on T, locate the point Z, along the
normal to T at z, for which @(3,) = &(3,) if & is the
known boundary condition, or ©{3y) = %(3,) if ~ is
the known boundary condition. Once T is determined,
additional nodes are placed along I' wherever |z, — z,|
is [arge.

The ABM affords the user several distincet advantages.
It is intuitively comforting to visually compare the
approximate boundary to the true boundary and use
geometric closeness as a measure of error. The user
simply considers displacement of the problem bound-
ary rather than using more abstract error approxi-
mation techniques. Nodal points can be easily added
to the boundary, based solely on visual determin-
ations. In this way, the approximate boundary provides
a direct visual representation of the sensitivity of the
approximation function in accommodating boundary
conditions, variations in the boundary geometry, and
the addition of nodal points.

The ABM is not, however, without difficulties. Using
a direct application of the CVBEM, the approximation
function has a value of zero on the exterior of the prob-
lem domain. Thus, an analytic continuation of the
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Fig. 1 The problem boundary for z + 1/z,
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Fig. 2. The 25-node approximate boundary.

approximation function to the exterior of the domain is
needed in order to determine the approximate bound-
ary. Another limitation of the ABM is the relative
tedium and often difficulty in locating the approximate
boundary between nodal points. These 1ssues are dis-
cussed in the following application problems.

PROBLEM SETUP

Several sample problems were considered in this study
to demonstrate the approximate boundary method.
While the ABM uses geometric deviation of the approxi-
mate boundary, I', from the problem boundary, I', as
the determining factor in the placement of additional
nodal points, the error of interest is the CVBEM
approximation error |w(z) —w(z)|, z€ . A useful
measure of the approximation error is the maximum
normed deviation of &(z) = ¢(z) + if(z) from w(z) =
@(z) + ip(z) over all z in Q. However, since this maxi-
mum error must occur, in the limit, on the problem
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Fig. 3. The 40-node approximate boundary.
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Fig. 4. The problem boundary for z°.

boundary, we use the error measure, E,, given by

E, = lifz) - w(z)]| = 2 € T V(1d(2) ~ #(2))*
+ (3(z) — ¥(2)?) (9)

where n is the number of nodes located on I'. The objec-
tive of this study is to use the ABM with initial CVBEM
approximations of the sample problems to obtain a 25-
node and a 40-node approximation for each sample pro-
blem and to calculate E, in each case.

The first step in using the ABM to refine the initial
CVBEM approximation is to locate the approximate
boundary for w(z). Since w(z) = 0 for z on the exterior of
T'Ufl, an analytic continuation of w(z} is needed. The
analytic continuation method used requires that branch
cuts originating from each nodal point and extending out-
ward, away from I U Q, be introduced so that the finite-
series expansion of the approximation function ¢an be for-

Fig. 5. The 25-node approximate boundary.
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Fig. 6. The 40-node approximate boundary.

mulated.' In this way, the analytic continuation of w(z) is
available, except across each branch cut. Using the analy-
tic continuation of w(z), the approximate boundary is
guaranteed to pass through the designated nodal points
. f=1....m+ 1 because each known nodal value (via
the boundary conditions) is matched by &(z) evaluated ai
each node. Hence, locating the approximate boundary is
accomplished by searching along the normal to I' at points
interior of each boundary element. In practice, the approxi-
mete boundaryis determined at a single point between each
node. Once I is found, additional nodal points are placed
at locations where the normal distance with respect to I
between I and T is large. Using these additional nodal
points, a more refined CYBEM approximation function
is formulated. This process is continued until a 25-node
approximation function, w.s(z), is produced and its
error, Eys, calculated. Afterwards, the same process is
used to add nodes until a 40-node approximation func-
tion, wyg(z), is produced and its error, Eg, calculated.

M.A. Woeod. C.J. Ciejka, T.V. Hromadka If

Fig. 8. The 25-node approximate boundary.

APPLICATIONS

The considered example problems have known solu-
tions. However, the considered problems are formu-
lated as mixed boundary value problems which require
the estimation of unknown conjugate function values
by means of the Cauchy integral, and the application
of the ABM demonstrates the technique’s utility. Because
the application problems have known solutions, the
CVBEM results can be examined for accuracy.

Exampie 1: w(z) = z + 1/z (ideal fluid flow over a
cylinder)

Figure 1 shows the problem boundary, the 17 nodes
initially defined on I, and the known values of ¢ and
¥. Both ¢ and v are known at the points (100, 0),
(100, 100}, {0, 100), and (0, 1). This problem provides
a good test case for demonstrating the ABM at loca-
tions along the problem boundary where streamlines
and potential lines interface as part of the boundary
conditions. The 25-node and 40-node approximate
boundaries are shown in Figs 2 and 3, respectively.
The maximum errors for each approximation are
Eys = 03502 and E, = 0-2534, indicating a 27-6%
reduction in approximation error.

®

Py

-2 IJJ:O ~12

=08 ¢:=m

0

-8 12 =0 2

Fig. 7. The problem boundary for In [(z + 1)/(z — 1)].
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Fig. 9. The 40-node approximate boundary.

Example 2: w(z) = z* (ideal fluid flow around a corner)

Figure 4 shows the probiem boundary, the 18 nodes
initially defined on T, and the known values of ¢ and
v Both ¢ and ¥ are known at the points (100, 0) and
(0, 0). This example considers the ABM as applied to
a large spatial domain problem where the boundary
conditions change considerably, and nonlinearly, along
the boundary. The 25-node and 40-node approximate
boundaries are shown in Figs 5 and 6, respectively.
The maximum errors for each approximation are
E»s = 162,326:90 and E, = 74,054-67, indicating a
54-5% reduction in approximation error. Note that the
ABM plots (Figs 5 and 6) for the 25- and 40-node appli-
cation, show a decrease in departure area, and in most
cases, a decrease in departure magnitude, between T
and I'. (Also see later Figs 8 and 9). Further research
is needed to describe what such departures between I'
and T indicate, and whether changes in departure
magnitude and in frequency imply approximation mag-
nitude bounds.

Example 3: w(z) = In|(z + 1)/{z — 1)) (steady-state heat
transfer between a source and sink of egual strength)

Figure 7 shows the problem boundary, the 18 nodes

initially defined on [, and the known values of ¢
and ». Both ¢ and ¥ are known at the points
(=2, 0, (=12, 0), (~0-8, 0), (+8, 0), (12, 0), and
(2, 0). The coupled source and sink problem involves
a singularity at coordinates (—1. ©) and (1, 0).
Consequently, this problem demonstrates the ABM in
the vicinity of singularities of the logarithmic type.
The 25-node and 40-node approximate boundaries are
shown in Figs 8 and 9. respectively. The maximum
errots for each approximation are £y =3-7076 and
Ey4p = 3-3743, indicating a 9-0% reduction in approxi-
mation error.

Conclusions

The approximate boundary method is studied with
respect to the usual relative error norm. Example appli-
cations demonstrate comparative uses of the approxi-
mate boundary technique; namely, an easy-to-use error
indicator, and a tool for aiding additional nodal point
placement. Because of the speed of available graphics
programs, error displays analogous to the ABM
may find increased use in computational mechanics
applications.
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1.BASIC FORMULATIONS/MATHEMATICAL ASPECTS

93/6/11.1.065

Van Genderen, A.J. and Van der Meijs, N.P.

A frontal computation scheme for the Schur algorithm to efficiently
selve large boundary-element problems,CompLuro 1992, The Hague,
The Netherlands, 1992, 568-573

The Schur algerithm provides an approximate inverse for partiaily
specified staircase band matrices. A frontal computation scheme is
developed for the Schur algorithm that achieves an O$?) space bound,
where b is the width of the staircase band. This property allows certain
classes of BE problems, such as thase that occur with VLSI capacitance
modelling, to be solved in linear time and using constant memory. An
example is presented and experimental results are givento illustrate the
algorithm.

93/6/11.1.066

Dument, N.A, and de Souza, R.M.

The hybrid boundary element method for the analysis of solids,
Boundary Elements XV, Vol.1, ed. C.A. Brebbia & J1.J. Rencis,
Computational Mechanics Publications, 1993, 551-564

The hybrid boundary element method, as developed in the Civil
Engineering Department at PUC/RJ, may already be considered a well
established formulation for problems of elasticity and potential. Among
other publications, several articles have been presented at BEM
International Conferences, since 1987, dealing with the basic theory,
body forces, special applications and transient problems.

The present paper describesthe implementation ofa three-dimensional
analysis program. In a first step, the basic equations are introduced and
the most relevant numerical aspects are discussed. Then follows a
general outline of the program, as regards stress analysis and post
processing of results. Some examples are displayed for illustration of
the capabilities of the program, mainly concerning the case of data
handling, a characteristic of the hybrid variational formulation
implemented.

93/6/11.1.067

Hromadka, T.V. Il and Whitley, R.J.

Expansion of the CVBEM into a series using intelligent fractals (IFs),
Boundary Elements XV, Vol.l, ed. C.A. Brebbia & 1J. Rencis,

Cemputational Mechanics Publications, 1993, 571-578

in this paper, the development of triangular fractals that geometrically
st into an area whose boundary isa function, of a specific type, is used
toexpand the complex variable boundary element method (or CVBEM)
into a series. The entire approximation effort can be written as a sum of
Cauchy integrals of incremental changes in basis functions.

93/6/11.1.068

Huber, O., Lang, A. and Kuhn, G.

Evaluation of the stress tensor in 3D elastostatics by direct solving of
hypersingular integrals, Comp. Mech., 1993, 12(1/2). 39-50

A new method of direct numerical evaluation of hypersingular Bls is
applied to the differentiated form of the Somigliana-tdentity
(hypersingular identitv} in 3D elastostatics. Through this method it is
possible to evaluate the stress tensor on the boundary of a complex 3D
structure in a very accurate manner by employing the direct BEM. The
geometry of the elements and their arrangements over the boundary of
the structure are not subjected to any restrictions, Numerical examples
are included.

93/6/11.1.069

Kamiya, N. and Andoh, E.

Standard eigenvalue analysis by boundary-element method,Commun.
Num. Meth. Eng., 1993, 9(6), 489-495

A method for analysing eigenvalues of the Helmholtz equation using a
standard existing subroutine for eigenvalue determination is presented.
It is based on the BIE formulation known as the multiple reciprocity
method. The formulation, having polynomial matrices in terms of the
eigenvalue as the coefficient matrices, is transformed into the standard
type eigenvalue problem. The resulting formulation makes it possible
to determine the required eigenvalues only by boundary discretization
without any initial rough estimation,

93/6/11.1.070
Kamiya, N. and Andoh, E.
Helmholiz eigenvalue analysis by boundary ¢lement methed,J. Sound
Vib., 1993, 160(2), 279-287
A new and robust scheme for the eigenvalue analysis of the Helmholtz
differential equation by the BEM is presented. Unlike the existing
methods in whichahighly complicated transcendental equation including
the unknown wavenumbers appears, the developed method can reduce
the computational task greatly with the help of the Multiple Reciprocity
BE formualtion in terms of the fundamental solution for the Laplace
~Squation and related simple calculations for polynomials, The Newton
method is employed for determination of the desired eigenvalues. The
solutionsof 2D preblems with various homogeneous boundary conditions
are included.

93/6/11.1.071

Kamiya, N. and Koide, M.

Adaptive boundary element for multiple subregions, Comp. Mech.,

1993, 12(1/2), 69-80

The sample point etror analysis and related adaptive BE refinement,
proposed by one of the present authors, is extended to the problem with
subregion partition which is often required for maintaining higher
accuracy and for treatment of composite dissimilar materials. The study
isdevoted toregularization of the requirement that the interface between
neighbouring subregions should be discretized by the unified criterion
for the both, while, in general, the error influences on the point on the
interface from one region differs from the other. Two examples
concerning the 2 Laplace equation are included.

93/6/11.1.072

Lei, X.-Y., Wang, X. and Huang, M.-K.

An effective boundary element approach for higher order singularities,
Int, J. Solids Struct., 1993, 30(15), 2109-2115

A new BE approach which introduces a *source line’ is presented. It is
very effective for higher order singularity. The scheme is discussed in
some detail in connection to plane elasticity. Numerical results for
meshes with unequal BEs are included. Higher precision than the
general BEM is obtained for both deflection and force.

93/6/11.1.073

Lu, P. and Mahrenholtz, O.

A modified variational boundary element formuiation for potential
problems, Boundary Elements XV, Vol.1, ed, C.A. Brebbia & J.J.
Rencis, Computational Mechanics Publications, 1993, 565-370

This paper presents a modified variational boundary element



