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ABSTRACT: The Rational Method continues to be the most widely
used approach for estimating T-year return frequency peak flow
rates for small catchments of about one square mile or less in area.
The Balanced Design Storm uait hydrograph method is perhaps
the second most widely used technique for estimating peak flow
ratea (and is the most widely used method for developing runoff
hydrographs) but is generally considered to be more accurate than
the Rational Method. In this paper, both of these T-year return fre-
quency peak flow rate estimators are shown to be mathematically
comparable. The close similarity between these two approximaters
may help explain why the Rational Method continues to be widely
used even though other more computationally sophisticated tech-
niques are readily available due to widespread computer software.
(KEY TERMS: Rational Method; unit hydrograph; hydrologic mod-
ele; surface water.)

INTRODUCTION

The unit hydrograph (UH) method is the most
widely used approach for estimating a runoff hydro-
graph corresponding to a given rainfall event. Gener-
ally, a catchment UH is developed from a
representative S-graph based upon a timing parame-
ter called lag. The rainfall event is then modified by a
loss function to estimate the catchment effective rain-
fall, which is then convoluted with the catchment UH
(e.g., Hromadka et al., 1987; Hromadka and Whitley,
1989; U.S. Army Corps of Engineers, 1982). The theo-
retical underpinnings of the UH method for both
storm event simulation and design storm analysis is
well documented (Hromadka and Whitley, 1989).

An important application of the UH method is the
estimation of T-year return frequency peak flow rate
values, Qp, by use of the Balanced Design Storm con-
cept (HEC Training Document TD-15; U.S. Army

Corps of Engineers, 1982). An even more popular
technique to estimate Q, for small areas (where
depth-area effects are negligible; usually, for areas
less than about 1 square mile) is the Rational Methoed
(e.g., Hromadka et al., 1987). In this paper, the UH
method will be used to derive the Rational Method
equation, linking both of these methods for estimating
peak flow rate values. The derived equations are then
applied to Orange County, California, conditions for
demonstration purposes.

PRELIMINARY DEVELOPMENT

A balanced design storm development for a T-year
return frequency event simulation is provided in the
U.S. Army Corps of Engineers HEC Training Docu-
ment TD-15 (1982). In that development, rainfall T-
year intensity-duration data are directly used to
construct a balanced rainfall storm event such that
the peak 5-minute rainfall depth is nested within the
peak 10-minute rainfall depth and so forth until a 24-
hour storm pattern is built. This storm pattern has
the property that every peak duration of rainfall has
a rainfall depth that has a T-year return frequency.
Application of the UH method is also provided in TD-
15, as are other topics such as loss rates, continuous
depth-area adjustment, and the approximation of the
convolution integral by a convolution matrix system
analog.

For a computational unit time interval of At (e.g.,
5-minutes), the design storm minus losses (i.e., the
design storm effective rainfall) is developed as a
sequence of unit effective rainfalls, <f;>. Similarly, the
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UH is resolved into a sequence of UH runoffs, <v;>.
The corresponding sequence of unit runoffs (<q;> are
developed by use of a convolution matrix system as
demonstrated in Equation (1):
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The sequence of unit runoffs, <q;>, forms the runoff
hydrograph corresponding to the balanced T-year
return frequency design storm under study. The maxi-
mum value of the {q;}, denoted by Q, is the peak flow
rate estimate.

Because of the single peak shapes of both the
T-year balanced design storm and the unit hydro-
graph, each has a largest unit interval value. Let &
be the maximum of the above set of unit effective
rainfalls, (fy, fa, . . .J. Let es be the next largest effec-
tive rainfall. Similarly, e; is the ith largest value in the
set {fy, f3, . . .}. Similarly, let u; be the ith largest value
in the set {vy, vs, .. ).

In general, for a UH of n At unit intervals, the peak
flow rate from Equation (1) involves the sum of prod-
ucts of the u; with the n largest e; unit values. For
example, a typical convolution matrix system (of
Equation 1) written in terms of the above e; and v;
unit values is:
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where Q,, is the peak flow rate given in this example
by

Qp = egug + e3uz + e1u; + eguy + equy

+eglg +equg +. .. (3)
Rearranging Equation (3) into decreasing magnitude
terms with respect to the g; values,

Qp = eju; + egug + egug + equy + exug

+ egug +equy +. .. (4)

From Equation (4), the Q estimate is suggested by
the upper bound Q, (from the UH analog) given by
the inner product

n
Qp< Y, eiy; (5)
i=1

where from the Equation (4) example, the upper
bound value is obtained by simply rearranging the
relatively small 5th and 6th terms. That is,

Qp = z eju; (6)
i=1

The last result (Equation 6) will be used to derive a
Rational Method peak flow rate equation, unifying
the Qp estimators of both the UH and Rational Meth-
ods. In order to proceed with the mathematical devel-
opment, a direct approach for deriving the sequence of
monitonically decreasing values of the e; and u; will
be presented which addresses the case of continucus
functions for both the effective rainfall, e(t), and the
unit hydrograph, u(t), rather than using a discrete
unit interval set of (e;] and {u;} as utilized in the pre-
vious discussion.

Rearranged Effective Rainfall Formulation

Design storm effective rainfall, or rainfall minus
losses, is developed herein as a rearrangement (Hardy
et al., 1967) of the effective rainfall design storm pat-
tern constructed from the T-year nested rainfall pro-
cedure outlined in TD-15 (U.S. Army Corps of
Engineers, 1982). In order to develop effective rainfall
quantities, a relationship for rainfall versus peak
storm duration is needed.
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Rainfall depth, of return frequency T, for storm
peak duration t, may be described for short durations
(usually less than about three hours) by

D(t) = att,aand b > 0 ()]

where D(t) = precipitation depth of return frequency
T, and t = peak duration, in minutes. Figure 1 pro-
vides various T-year D(t) plots for Orange County,
California.

Mean rainfall intensity, I(t), inches/hour for peak
duration t, and return frequency T is obtained from
Equation (7) by

It) = %D(t) =60 atb1 8)

Equation (8) is the usual, rainfall intensity-duration
relationship used in Rational Method studies. Instan-
taneous T-year rainfall intensity, i(t), is obtained from
Equation (7) by

i(t)= 60-(%: D(t) = 60 abt®~1 = bI(t) (9)

Figure 2 shows i(t) for T = 100 years based upon Fig-
ure 1.

Instantaneous effective rainfall, e(t), is obtained
from Equation (9) for a phi-index (i.e., constant) loss
function approach (e.g., Hromadka and Whitley, 1989)

by
e(t) =i(t)-¢,i(t) > ¢ (10

where e(t) = instantaneous effective rainfall rate at
peak storm time, t; and ¢ = phi-index, a constant.

Similarly, for instantaneous effective rainfall given
as a constant fraction of rainfall,

e(t) = Ci(t) : (11)

where C is a positive constant greater than zero.

It is noted that the effective rainfall formulations of
Equations (10) and (11) are both monitonically
decreasing rearrangements of the effective rainfall
design storm pattern of TD-1§ (U.S. Army Corps of
Engineers, 1982), or other nested design storm pat-
tern approaches that provide consistent return fre-
quency rainfalls for all durations. It is also noted that
other effective rainfall formulations can be developed
analogous to the above.

Rearranged S-Graph Formulation

For Southern California, the “Valley-Developed”
(Figure 3) S-Graph is representative of fully urban-
ized regions with extensive storm drain systems, It is
equivalent to the U.S. Army Corps of Engineers’
“LACDA Urban” S-Graph (Hromadka ef al., 1987;
Hromadka and Whitley, 1989), and closely approxi-
mates the standard SCS unit hydrograph. This 8-
Graph can be rearranged analogous to the
depth-duration relationship used for rainfall. A log-
log best fit plot provides an approximation of the
resulting mass curve by

M(¢) = c£d (12)

where M({£) = peak mass {percent) of the S-Graph for
peak time duration of £; and ¢ = catchment lag, in per-
cent. Figure 4 shows a log-log fit of Figure 3 in a
monitonically decreasing rearrangement form, M(2),
resulting in M(£) = 2.42 £0-68, By ignoring the last
10 percent of mass in Figure 4, Figure 5 provides a
log-log fit of M(£) = 1.42£084 which is used in the fol-
lowing development. Figure 6 provides a cubic polyno-
mial fit to M(£) by -0.77 + £ -0.003 £2 + 0.00004 £3. In
both fits, agreement is close for the initial 80 percent
of UH mass.

Catchment lag is related to the usual catchment
time of concentration, Te, by

P (L)(M) (13)
Te 0.8

where lag = 0.8Tc¢ by calibration to rainfall-runoff
data; and Tc is the time of concentration (i.e., the sum
of normal depth travel times) in minutes. Other linear
relationships may be used in Equation (13) of the
form lag = yT¢, v a constant.

From Equation (12), M{(t) is given by

d d d
o100Vt N af t (14)
M(t) c(o.s} (TCJ c(125) [Tc)

and the rate of change in M(t) is

dM(t) _ 1253 cdtd-1

" Tod (15)
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Regression Eguations: D(t)= atP
(D= Depth in inches, t= duration in minutes)

Return Pregquency
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Figure 1. Precipitation Depths Versus Peak Storm Duration in Orange County, California.
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Figure 2. Instantaneous Rainfall Intensity,
i(t), for T = 100 Years.
Figure 4. Log-Log Plot of Rearranged S-Graph of Figure 3.
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Figure 3. “Valley-Developed” S-Graph or “LACDA Urban”

S-Graph for UH Development.

Figure 5. Log-Log Plot of Peak 80 Percent of
Rearranged S-Graph of Figure 4.
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Figure 6. Cubic Polynomial Fit of Rearranged
S-Graph of Figure 3.
Peak Flow Rate Formulation

The peak flow rate, Q., is related to the product of
the above rearranged e(t) and M(t) functions by

]_0083 AI

dM
Qs ==Af e Tt (16)

where A = catchment area; 1.0083 = conversion factor
for inch/hour (from e(t) to cfs) (Imperial units used
due to familiar form of Rational Equatlon) Qplx) =
peak flow rate, for peak storm duration x, in minutes;
and 100 = conversion factor for percent to decimal
(from M(t)). Combining Equations (9), (10), (15), and
(16),

L0083 , ¢x be1 oy 125%d 4ot
Qs = = Ajo (60abt —¢)Tc3--t dt

(17)

Simplifying Equation (17),

1.0083\A125%¢dx? | 60abx>-! ¢
< 18
QP(X)<( 100 ) ed [ b+d-1 d (18)
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Example

In Orange County, California, and T = 100 years,
a=0.259,b = 0427, ¢ = 1.42, d = 0.84; thus from
Equation (8), I(Te) = 15.54(Tc)-0.573,

In order to develop Q,, we must find the value of x,,
such that M(x) = 100 percent in Equation (14),

d
100 = c(125)“(5£) (19)
Te
giving
1
oo () 220 a0
125 0 ¢
For Orange County,
X, = 1.267T¢ . (21)

Substituting Equation (21) into Equatjon (18) gives

d
4. Te Yof 100
q <[10083)A125 °d(125J ( ¢ ]
P7{ 100 Ted

b-1

ou{ 2] )
125 = . (22)

b+d-1 d

or
b-1

o127

I(t) - (23)
125D pid-1 -9

Qp £(1L0083)A

A limitation to the above results (for the phi-index
loss function) is that i(t) > ¢. For x, (see Equation 19
to Equation 21) = nTe, n>1, this implies bl(x,) > ¢.
This is satisfied when

1

L9 T (24
Tc<n[60ab] )
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For Orange County and T = 100 years, a = 0.259, b
= 0.427, 1 = 1.267, and Equation (24) is given by the
requirement

Te « 21.45 ¢-1.745 | (25)

For ¢ = 0.3 inches/hour (average conditions in
Orange County), TC < 175 minutes, which is general-
ly satisfied for small catchment areas.

Comparison of Rational Method and UH Peak Flow
Rate Formulations

For the phi-index loss function, the usual Rational
Method peak flow rate estimate, Qp, is given by

Qgr = 1.0083A (I-¢) (26)

where I = I{T¢).
In comparison, from Equation (23)

b-1

bd(-l—oﬂ) d
C

< 1.0083A
% 125~ b +d- 1

(27)

where o follows from the equation.
Similarly, for a constant proportion loss function,
the Rational Method peak flow rate, Qp, is

Qg = 1.0083 ACI (28)

whereas from the above UH development,

b1
bd[l—og) d
£ I= L0083ACal

< 1.0083AC
b 1251 (b+d-1)

(29)

where again, I = I(Tc), and a is the same value as in
Equation (27). It is noted from Equations (27) and
(29) that a is dependent upon the values of parame-
ters ¢ and d (which describe the rearranged S-Graph
characteristics) and the rainfall parameter b. The
b value describes the slope of the log-log rainfall
intensity-duration plot, and is generally a constant for

1-¢|=L0083A Jai - ¢)

large regions (e.g., b = 0.427 for the entire Qrange
County, California).

In Orange County, California, for the “Valley-
Developed” S-Graph of Figure 3,

Q, (Equation 27) < 1.0083A (1.173 ~ ¢) (30)
Qp (Eguation (29) < 1.0083AC (1.173) I (31)

which implies 0. = 1.173.

A comparison of the UH peak flow rate estimators
to the corresponding Rational Method estimators
show a very similar structure, which may partially
explain why the Rational Method continues to be
widely used in design practice due to its acceptable
results.

It is noted that Equations (27} and (29) are maxi-
mal estimators (see Equations 2 through 6). Conse-
quently, the coefficient of 1.173 seen in Equations (30}
and (31) is an upper bound. Additionally, the log-log
approximation used in Equation (12) is also a conser-
vative approximation. By a further analysis of Equa-
tion (16), an evaluation of Q, is possible. Define the
function X*(x,0,Te) by

X*(x,0,Tc)= [ (i(t)- ohut, Te)dt (32)
where
ult,Te) = dM(s)
ds {Tes=t

Then Equation (32) is a restatement of Equation (16),
where the asterisk notation refers to the upper bound.

For any time t, the u(t, Tc) function can be rescaled
for another time of concentration value, Te’, by

Te d-1
ult, Te) = u(t,Tc)(—,) (33)
Te

Consequently, combining Equations (32) and (33),

£ ¥ (x,9,Te’) = [-?—9-)'1_1 I * (i(t) - dult,Te)dt (34}
1Y Te’ o Y

From Equation (34), variation in the catchment Te (or
lag) results in a constant proportional change in the
integration.

In Equation (32), u(t, Tc) is a result of rearranging
(see Equations 2 to 6) the original UH v(1,T¢). Conse-
quently,
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v(t,Te) = ulg(t), Te) (35)

where g(t) is a remapping of the point order of u(t, Tc).
Define e(t,Tc) by

u(g(t), Te)

£(t, Te) = u(t, To)

, for u(t,Te)>0 (36)

Then from Equations (15) and (32),

d d-1 d,.d-1 d-1
et 0 - 4125 ) / ed125 _[g(t)]
Te Te

(37

and e(t, Tc) = e(t), a function of t only. Thus, £(t) is
independent of ¢ and Te, and &(t) is infinitely discon-
tinuous, although bounded and measurable (Hardy et
al., 1967).

Combining equations, a function X(x, ¢, Tc) is given
by

%(x,,Te) = j" G(t) - )ult, Te)elt) dt (38)

where u(t, Te) = 0 for x > x,, and M(x,, Tc) = 100 per-
cent.
Thus

Q, = X(x,,0) = J”"’ i(thut, Toke(t)dt - o[ 0 u(t, Te)e(t)dt
(4] D
(39)
where in Equation (39) x, and Tc are known simulta-

necusly.
The second integral of Equation (39) is solved by

o j u(t, Tee(t)dt = p(M(x, )~ M(0)) = 0A (40)

The first integral of Equation (39) is solved by using
the mean value theorem (Hardy et al., 1967)

[ iouToewdt=¢, [ * iWue,Tode @D

where the right-hand integral of Equation (41) is
solved previously (see Equation 18), and ¢, depends
on x,, where x, - n'Te,

From Equations (40) and (41), the resulting Qp for-
mula is

Q, = L0083 ¢, (ITc) —)A  (42)
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To evaluate €, and its variation with respect to Xo,
numerous Qp estimates were developed by using
HEC-1 UH procedures, for various Te¢, ¢, and the S-
graph of Figure 3. Again, the limitations imposed by
Equation (24) were observed. From the simulations, it
was concluded that

0.97 < e(MTe) < 1.02, with mean of 0.98

and standard deviation of 0.01 (43)
that is,
Qp = (I(Te) ~ ¢)A; (Valley-Developed) . (44)

Similarly, using the constant proportion loss fune-
tion for Equation (28),

Qp = CILA; (Valley-Developed). (45)

1t is noted that Equations (44) and (45) are for the
“Valley-Developed” S-Graph. Another Orange County,
California, S-Graph is the “Valley-Undeveloped.” For
the latter S-Graph,

Qp = (0.861(Te) - 9)A; (Valley-Undeveloped) (46)
or
Q, = 0.86 CIA; (Valley-Undeveloped) 47)

where in this case, 0.83 < ¢, < 0.89 with mean 0.86
and standard deviation of 0.01. The above two Q, for-
mulae (Equations 44 and 46; or Equations 45 and 47)
represent two different S-graph (unit hydrograph)
response functions. Other S-Graph types (e.g., “Moun-
tain,” “Desert”) would have different parameter val-
ues.

CONCLUSIONS

The Rational Method peak flow rate estimator is
shown to closely match the Balanced Design Storm
unit hydrograph estimator for peak flow rate given
loss functions of the phi-index type or constant frac-
tion loss type (among others). The Rational Method
equation can be significantly improved by including
an additional multiplicative constant that corre-
sponds to the S-Graph or unit hydrograph type (e.g.,
SCS, Mountain, Desert, Valley, etc.). Both modeling
techniques are shown to result in very similar mathe-
matical structures in the estimate of the T-year
return frequency peak flow rate. This similarity in
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structure provides additional foundation and insight
nte the application of the widely used Rational
Method.

Because the Balanced Design Storm unit hydro-
graph method has gained widespread use among
floodplain management and flood control agencies,
the direct linkage to the simple Rational Method
equation should provide more insight as to that equa-
tion's appropriateness, as well as a similar level of
confidence in its usage. The Rational Method can now
be applied for a wide variety of unit hydrograph
responses by simply developing a single multiplicative
constant (that depends only on the type of unit hydro-
graph). A table containing S-Graph type versus the
peak flow rate adjustment factor value can be readily
made and included in watershed management hydrol-
ogy manuals or similar documents.
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