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Under mild cenditions a certain subspace M, consisting of functions which are analytic in a simply
connected domain {1 and continuous on the boundary I, is shown to have real parts which are
dense, in the sup norm, in the set of all solutions to the Dirichlet problem for continuous boundary
data. Similar results hold for L? boundary data. Numerical solutions of sample Dirichlet problems
are computed. © 1994 John Wiley & Sons, Inc.

. INTRODUCTION

Boundary value problems which involve Laplace’s equation in two dimensions can
be solved numerically by a complex variable-based boundary element technique. This
complex variable boundary element method (CVBEM) has been vsed to solve problems in
groundwater flow [1], prediction of freezing front in soils [2), steady-state heat contaminant
transport [3], St. Venant torsion [4], steady-state heat transfer {5], and other problems [6].
Also see the problems discussed in Chap. I of {7].

We establish constructive cxistence theorems for Dirichlet problems which apply 1o
continuous boundary data or discontinuous LF boundary data on a simply connected
domain with a simple closed piecewise continuously differentiable boundary of finite
length, allowing the consideration of domains with boundary corners which arise frequently
in applications. The approximating function is shown to be the real part of a function
analytic in the domain and continuous on its closure; the fact that this function is known
throughout the domain, and not just at a series of mesh points, is of basic importance for
many applications, e.g., in computing conformal maps, which we will discuss in a later
paper, or in computing the torsional rigidity of a domain (among other applications), for
which see below.

Sample computational results are given in Sect. IIL
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il. DENSITY THEOREMS

let ©) be a simply connected domain in the complex plane with piecewise con-
tinnously differentiable boundary which is a simple closed curve of finite length, with
parametrization .

go:[O,l] — T,

It is assumed that the map ¢ is continuous on [(, 1] one-to-one on [0, 1) with ¢ (0} = (1),
and is continuously differentiable, with nonzero derivative, except at a finite number of
parameter points {¢|, ..., cn} corresponding to corners which are not cusps; at the corners,
the right-hand and left-hand limits of the derivative exist, are not zero, and satisfy the
condition ¢'(e}} + (p’(cj‘) # 0 that ¢; not be a cusp for each c;.

A condition basic 10 the development is that for each point b on T, there be a continuous
non-self-intersecting path Pb, joining b to infinity, which lies in the complement of
2 UT - |{b}; this property of the domain is slightly stronger than the domain being
simmply connected [8]. Use Pb — b, a curve joining O to infinity, as a branch cut to define
a branch of the logarithm, logp,(w), analytic for w in the compiex plane but not on the
branch cut Pb — b, and thereby define the function

folz) = (z — b} logps(z — &) (1
analytic on {2 and continuous on {2 U I'. Functions similar to (1}, without consideration
of the branch cuts, appear in the solution of various potential problems; see, for example,
[9], p- 285.

Let M be the complex linear space spanned by the functions 1, z, and f,,(z) for ail b
in I':
M =sp{l,z, fp(z): b in I'}. #)
Note that each function in M is analytic on €} and continuous on U I'.

Theorem 1. Let g be a given continuous real-valued function defined on I and let ¢ > 0
be given. There is a function h(z) belonging to the subspace M described by (2) with

sup{|Re[A{z}] — g(z)l: zon T} < . (3)

Proof. Let M, be the teal vector space spanned by 1, Rez, Imz, and the real and
imaginary paris of all the functions f;,

M, = sp{l,Rez, Imz, Ref,(z), Imfy(z): for all & in I'}. (4)
From the equations

vo + agRez + Folmz + Z a;Ref, (z) + B;lmf, (2)

i=1

- RC{(Y@ + (a0 — o)z + 3 (ay - fﬁ,-)fbf(z)} - RefhD],  (5)

=i

it follows that the assertion of the theorem is equivalent to the statement that M, is dense
in the space C.(I') of continuous real-valued functions defined on T'.
The space C,(I') is mapped into C,[0, 1] by the linear isometry

(f) = frog, (6)
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the image consisting exactly of those functions g in C,[0, 1] satisfying g(0) = g(1), and
thus

C.[0,1] = ¢[C.(I")] + sp(ge)

where gg is the function defined on [0,1] by gp(t) = ¢
To establish the theorem, begin by assuming that ReM is not sup norm dense in C,(I7),
or equivalently that

w[M,] + sp(go) @)

is not dense in C,[0,1]. In this case, by the Hahn-Banach theorem there is a nonzero
continuous linear functional x* on C,[0, 1] which maps the subspace of Eq. (7) to zero.
The standard representation theorem ({10], p. 150) shows that x™ corresponds to a right
continuous function e of bounded variation on [0, 1], normalized to have a(0) = 0, with

1
o) = [ gdaty ®)
for all g in C,[0, 1]}
Since the function identically 1 belongs to M,,

I
a(1) = a(l) — a(0) =j0 de = x"(1) = 0. )

Because the functions Ref, and Imf, belong to M, for any b on T,

t
j; Feleg(r) da(t) = 0. (10)
Integrate by parts in (1) ([11], p. 195; [12], p. 283) to obtain

1
fﬂ () df ol (1)) = 0. a1

Since fp{¢(¢)) is absolutely continuous, (11) can be rewritten as the Lebesque-Stiltjes
integral ([13], p. 419-420; [14], p. 264)

1
fn {1 + logeolee(t) - Bl}a(t}'(r)dr = 0. (12)

From a more elementary point of view, the integral in (12) can be taken to be a Riemann-
Stiltjes integral which is improper because of the singularity of logp,[e(z) — 5] at the
point fy at which ¢(5) = b, and so is understood to be the iimit as £, and &; tend to
zero of the integral from O to &y — &; plus the integral from ¢, + & to 1 (with £y = 1
and ¢ = 0 requiring different notation).

Since a(1) = @(0), the expression

gz} = ale™(2)) (13)

defines a function on I'. This function g is real valued and of bounded variation.
Use the definition of the line integral to write (12) as

fr [1 + loge(z — b)) glz)dz = 0. (14)
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Define
Gr(s) = fo gl () dr

= f a(r)e'(r)dr. (15)
0
Integrate by parts to show that
1
6rt) = = [ et = ~*wi) = 0 (16)
and therefore, since Gr(1) = Gr(0),
G(z) = Grie ™ '(2)) (17)
defines a continuous function on T', with derivative
G'(z) = ¢’ (e (2N (@ N(2) = g2) (18)
holding almost everywhere on I'.
The function G satisfies
Iy
G -~ Gl = o, [ gl (19)
4

where M, = sup{lg(z)|: z on I'}, @(#;) = z,, and @(2;) = z;. The integral in (19) is the
arclength of the curve between z; and z;. The final inequality needed is also basic to
the proof of the Sokhotski-Plemelj formulas used below; it is that ([15], p. 21) “the ratio
of the small arc [length] of contour to the comesponding chord is bounded,” which is
true for curves with a finite number of corners which are not cusps ([15], p. 31; [16],
Appendix 2). From this it follows that

IG(z1) — G(z2)] = Malzy — zal, (20)

L.e., G satisfies a Lipschitz condition on T.
Integrate by parts in Eq. (14}, treating the integrals obtained as principal value integrals,
modifying the proof of {15] (p. 18) to apply to curves with corners,

1 G(z)
GeoE) /- = [ L
mi Jrz— b
where @(b} is the interior angle between the two tangents to the contour at the point b;
thus ®(b) = 7 except at comers.
Consider the function G, which is defined for w in Q by

dz, (21)

. 1 Gz

Gilw) = —— f L@ dz (22)
2mi Jr z — w

and the function G_(w) defined for @ in the complement of ¢ U T by the same integral

as in (22). Given a point b on [, the Sokhotski-Plemelj formulas ([17], p. 88; [18], p. 94;

[15], p. 32) for comers, show that

1) 1
o = (1= G2 )ewr - o [ e,
o (b) 1 G(r )Z ()
- _ ) Z
C-0) = -5 6 + 5 fr -5 %
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where G.(b) denotes the limit of G+(w) as w tends to b nontangentially for w in (0,
G_(b) the limit as w tends to b nontangentially for @ in the compiement of & U T,
and the integral is a singuiar integral; the existence of these limits following from the
derivation of these formulas. Use Eq. (21) to see that

G+(b) = G(b),

24
G_(b) =0. @4
Thus the function G defined by
Ay | G(zy forzonT
Glz) = [G+(z) for z in §) (25)

is continuous on (1 U I' ([16], Appendix 2).
Use the fact that G_(w) = 0, and expand the integrand in the integral of (22), for large
w, io a power series and conclude that

fG(z)z"dz=0, n=201.... (26)
r
Integrate by parts in (26) to obtain

frg(z)z" dz=0, n=12,.... (27)
From (16) and (17), Eq. (27) also holds for n = Q. Define the function g. for w in Q by

1 g(z)
= — ————d
g+{w) Y fr pa— (28)

and the function g_(w) for @ in the complement of & U I’ by the same integral.
Equation (27), for n = 0, 1,..., shows that the analytic function g_(w) is zero for large
@ and therefore is zero on its domain,

Differentiate the integral in (22) with respect to w, and then integrate by parts, to obtain

G @) = gi(w) for w in (). (29)

The function g is differentiable on I', except for points in Ny, & set of points of
measure zero, because « is of bounded variation ([14], p. 100). At the points where
g is differentiable, it satisfies a local Lipschitz condition and the local version of the
Sokhotski-Plemelj formulas ({15], p. 23; [18], p. 94, modified for corners) show that at a
point zo where g is locally Lipschitz the limit of g,(w), as @ tends nontangentiaily to
20, 15 g(z0), since g-(w) is zero.

Let ‘U be the unit ball and p: U — 2 be the conformal map given by the Riemann
mapping theorem, extended as a continuous map of the closure of U to the closure of {)
by the Caratheodory-Osgood theorem ([18], p. 346). Consider

gol@)=gs 0oplw), winl. (30)

If z = ¢ in @'U does not belong to p~'(Ny), and w = re’?, 0 < r < 1, then as r tends
to 1. p{w) tends to p(z) nontangentially for almost all z ([19], p. 45) and therefore . (w)
tends to g(p(z)). Since p~!(Ny) is a set of measure zero ([19), p. 45), §+ is analytic in U
and has a radial limit a.e. the function g(p(z)), which is a function of bounded variation.
Since g, is in H™, by [19], (p. 42) . has a continuous extension to the closure of U
which is actually absolutely continuous on the boundary. Since the boundary values of g,
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are real a.c., and g- extends continuously, its boundary values are real. If §, were not
constant it would be an open map onto a bounded domain with real boundary, which is
not possible, and so 2. is constant and therefore g. is constant in {2. Then g on T, being
the nontangential limit of g, a.e. is constant a.e., and being right continuous is therefore
constant. Equation {13) shows that then « is constant dnd therefore the linear functional
x¥is ZeTo, COntrary to assumption. Q.E.D.

The result of Theorem 1 was previously known to hold only under very restrictive
conditions ([6], Chap. 3) on both the boundary and the given boundary value function.

Note that if Res approximates g to within & in sup norm on T, then it approximates
the solution to the Dirichlet problem to within £ in sup norm on all of & U T by the
maximum principle because the approximating function /s of Theorem 1 is analytic on
all of ) and continuous on 2 U I'. [In fact, if |Reh,(z) — g(z)| < 1/n on T, then
{h} converges uniformly to A continuous on U [, analytic in (), with Reh = g
on I'.]

Corollary 2. Given a real-valued function g in LP(T), 1 = p < o, and a positive
number g, there is a function 4, analytic on {1 and continuous on ¢ U T, of the form
given in Eq. (5), with

1/p
{frlg(z) = Re[a(2)]} Idzl} <e. 31

Proof. Given g as stated, consider (g), which is in L?[0, 1] since |¢'(¢)] is bounded
below by a positive number. The real-valued continuous functions on [0, 1] are dense in
LF[0,1], so there is an f in C,[0, 1] with

1
fo lgle(e)) — f1()I? dr

as small as desired. There is a function f, in C,[0, 1], arbitrarily close 10 f) in LF[0,1]
norm, with f,(0) = f,(1); this f; is then also close to ¢(g) in LP[0,1]. The function
g2 = f2 o ¢~! is continuous on T, and, because |¢'(z)] is bounded above on [0,1], g
is close to g in LP(T, {dz{). By Theorem 1, there is a function A(z), of the type desired,
which is close to g2 in sup norm on I and therefore close to g in L2(T, |dzl). Q.E.D.

The above proof of the existence of a solution to the Dirichiet problem does not supply
an a priori error bound in the sense that from the proof it is not possible before calculation
begins to say how large m must be in Eq. (5) in order that a given boundary function g
be approximated to within a preassigned positive . It is also not possible to prescribe
the best choice of the points &1,..., b,; it is easy to see that theoretically it will suffice
to choose points from any given dense set of points on I', but as a practical matter
some placements of nodes lead to much higher accuracy. However, in all the numerical
work which has been done, useful accuracy has been cbtained for small m and simple
choices by, ..., b,

As part of the proof of Theorem 1, it is shown that an analytic function on {1 which
has boundary values a.e. equal to a real-valued right-continuous function of bounded
variation is constant. This is shown by a heavy-handed use of the Riemann mapping
theorem and the Caratheodory-Osgood continuous extension (from which a proof of
the existence of a solution to the Dirichlet problem follows directly via the Poisson
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integral formula), as well as the use of more subtle properties of the Riemann map.
An easier proof of this fact would allow Theorem 1 to provide an independent proof
of the existence of a solution to the Dirichlet problem for the domains covered by
the theorem.

Note that the functions of the form (5) are not necessary equivalent to the linear
superposition of integrals of Cauchy type which are ordinarily used in the CVBEM.
Any family of functions which are analytic in D' and continuous on D U T, whose real
parts approximate any given continuous function to any given degree of accuracy, can
be used in place of (5); the latter approximating property is, however, usually difficult
10 show.

lll. COMPUTATIONAL EXAMPLES

A computer program was written to approximate the solution of Dirichlet problems
by means of functions given by Eq.(5). Given a parametrization ¢ of the sim-
ple closed curve I', an input number m of points, f#,...,7, are chosen equaily
spaced in {0, 1], giving rise to the points by = @(11},...,bn = @(t,), called nodes,
on I'. Given a real-valued function g defined on I', the coefficients vy, and
a; and B;, j=0,1,...,m of Eq.(5) are found by finding the best solution, in
the sense of least squares, to the overdetermined system of linear equations

Re[h(z;)] = glz;), j=1,2,...,3m + 5,

0.02 ¢

0.015 |

001 |

0.005 |

o I

ERROR

-0.005

001 ¢

0015 |

_002“ M SUPUN N SR BRI SN REPR
0 0.2 04 0.6 0.8 1

FIG. 1. The errors given by (34) for the ellipse (32) with @ = 2, b = 1, with boundary condition
133) for 10 and 20 nodes.
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the evaluation points z; being obtained by applying ¢ to 3m + 5 equally spaced points
in {0,1]. Once these coefficients are known, A(z) can be easily evaluated for each z in
the domain or on its boundary T.

Example A
The problem domain is an ellipse, parametrized by
@(t) = a cos(2mt) + ib sin(2art), (32)
¢ in [0, 1]; for this problem a = 2 and b = 1. The boundary conditions are given by
Re(z)* + Im(z)? -
gt) = ———— . (33)

The salution to this problem with boundary condition (33) can be directly used to calculate
the torsional rigidity of the domain ([7], p. 206).

This example compares the accuracy of the approximation for 10, 20, 30, and 40 nodes.
The L*(T', |dz|} norm of the difference between the approximate solution and the boundary
condition, i.e., the value of Eq. (31) for p = 2 is, for 10, 20, 30, and 40 nodes, respectively,

2, — ! T 2
18y~ - B T - }tig
164 ': : 16
147 i 14
1.2

fog

tos

- foq

foz

= TR

FI1G. 2. The solution for an ellipse (32) with @ = 2, b = 1 for boundary cendition (33).
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2.43 X 1072, 6.84 X 1077, 420 X 1073, and 1.82 X 107, In Fig. 1, a graph is given
comparing the error

crror(r) = Re[h(y(1)) — g($(1))] (34)

for 10 and 20 nodes.

The solution h{z) is easily computed on Q0 U I', and so the approximate solution
Refk(z)] can be drawn as a solution surface over the domain. This is done in Fig. 2
for example A with 20 nodes. The error is so small that the difference between the exact
solution and the approximate solution is not discernible in the graph; the jaggedness in
the plot of the surface comes from plotting it at a mesh of 50 X 50 points, not from any
error in the approximation.

Example B

This example shows how the accuracy of the approximation depends on the shape of
the figure. The boundary condition is the same function (33) used in example A, and
the number of nodes is 20. The domains are cllipses for the three sets of parameters
(@=2 b=1),(ea=3 b=1),and (a =4, b = 1), For p = 2, (31) is, respectively,
6.84 X 1073, 1.90 X 1072, and 3.71 X 1072 In Fig. 3, a graph compares the error of
(34) for (@ = 2, b = 1) with the larger error for (@ = 4, b = 1). Because the error r of
(31) is given by the square root of an integral along T, it is better to compare the vaiues
of r of divided by the square root of the arclength of I'; for the three curves considered
here these values are 2.2 X 1073, 5.2 X 1073, and 9.0 X 1073

0.025 [
002 | ' e
0015 | Y ol
001 fy
0005 it
i
0005 |-
001 |
oots F' 0 I — B
002 F - - |

0025 - R
6 02 04 08 08 1

FIG. 3. Error (34) for the ellipses (32) with a = 2, & = | and a = 4. b = |, for boundary
condition (33) with 20 nodes.

ERROR
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Example C

The Dirichlet problem is solved for the thombus with vertices at (L, 0), (0, 1), (—L,0),
and (0. —1) for L = 1,2,3, and 20 nodes the error curves for L = 1 and L = 3 being
given in Fig. 4.

L(1 — 48y + idr, 0=<1t=025
VL -4 + i@ — 4, 025=1 =050
UV =1 lar — 3) + i(2 ~ 41), 050 =t =075 (35)

L4t —3) +i(4t —4), 075=r=1,

The r values are, respectively, 3.86 X 1073, 1,02 X 1072, and 2,22 X 102, Compare
these values with the r values for the progressively more elongated ellipses of example
A to see how the presence of corners affects the accuracy. As in example B, a better
measure of the error is r divided by the square root of the perimeter of the figure, i.e.,
1.62 x 1073, 3.41 X 1073, and 6.24 X 1077,

The next three examples are of discontinuous boundary values. The boundary function
chosen is 1 on the top half of the figure and O on the bottom half.

Exampie D

The domain is the ellipse, with a = 2, b = 1, of cxample A with the boundary condition

1, 0=r=205

glr) = [0, 05=<t=1. (36)

The error curve of Fig. 5 is not much improved by adding nodes, the r values for 10,

20, 30. and 40 nodes being 2.82 X 107!, 2.01 X 107!, 1.64 X 107}, and 1.42 X 107L.
This is also true for the remaining examples.

Example E

The domain is the top half of an ellipse:

| acosawe) + ib sin(27r), 0=1=05
) =140 — 3) + 0i, 05=<r=1 (37)

with @ = 2 and b = 1, and boundary condition (36).

Exampie F

The curve is the rhembus (35) with L = 1, i.e., a rotated square, and the boundary
condition {36). The error curve of Figs. 3 and 6 is almost identical with that of Fig. 7.

The last three examples illustrate that the dominant cause of inaccuracy is the
discontinuity in the boundary condition, the presence of corners in the domain having
3 much smaller cffect.
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FIG. 4. Error (34) for the rhombus (35) with L = 1 and L = 3 for boundary condition (33) with
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FIG. 6. Error for the figure of (36), @ = 2, b = 1, for boundary condition (36} and 20 nodes.
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F1G. 7. Error for the rhombus (35) with L = 1. boundary condition (37) and 20 nodes,
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