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A stochastic integral equation analog of rainfall-runoff
processes for evaluating modeling uncertainty

T. V. Hromodka 11
Boyle Engineering, 1501 Quail Street, Newport Beach, CA 92638, USA

R. J. Whitley
Dept. of Mathematics, University of California, Irvine, CA 92717, USA

Abstract: In this paper a very general rainfall-runcff model structure (described below) is shown to reduce
{0 a unit hydrograph model structure. For the gereral model, a multi-linear wnit hydrograph approach is
used to develop subarea runoff, and is coupled to a multi-linear channel flow routing method to develop a
link-node rainfall-runoff model network. The spatial and temporal rainfall distribution over the catchment
is probabilistically related to a known rainfall data souzce located in the catchment in crder to account for
the stochastic nature of rainfall with respect to the rain gauge measured data. The resulling link node
model structure is & series of stochastic integral equations, one equation for each subarea. A cumulative
stachastic integral equation is developed as a sum of the above series, and includes the complete spatial and
temporal variabilities of the rainfall over the catchment. The resulting stochastic integral equation is seen
to be an extension of the well-known single area unit hydrograph method, except thai the model output
of 2 runoff hydiograph is a distribution of cuicomes {ot realizaiions) when applied o problems involving
prediction of storm runoff; that is, the model output is a set of probable runoff hydrographs, each outcome
heing the results of calibration to a known storm event.

Key words: Rainfall, runoff, modeling, uncertainty, stochastics, stochastic integral equations.

1 Introduction

Issues regarding rainfall-runoff modeling complexity and the apparent lack of success in achieving
further improvement in modeling accuracy is well documented (for example, Jakeman and Horn-
berger, 1993; Loague and Freeze, 1985, Hornberger et al, 1985; Hooper et al, 1988; Beven, 1989;
Hromadka and Whitley, 1989). Speaking of the use of a unit hydrograph, Jakeman and Horn-
berger (1993), observed a “predominant linearity in the response of watersheds over a large range of
catchment scales even if only a simple adjustment is made for antecedent rainfall conditions. The
linearity assumption of unit hydrograph theory therefore seems applicable in temperate catchments
and works just as well for slow flow as for quick flow.”

In this paper, the work of Hromadka and Whitley (1989; pgs. 169-254) is rederived in a con-
structive way which streamlines the accounting of rainfall variations over the catchment, resulting
in a final formulation which is easier to use. The use of stochastic integral equations to model
rainfall-runoff response is shown to come about from a straight-forward use of probability in model-
ing the uncertainty in runoff as due to the uncertainty in the distribution of rainfall (see Hromadka
and Whitley (1989}, pgs. 1-52, for a review of the literature regarding rainfall-runofl models and
stochastic integral equations.) The unit hydrograph approach is used to generate catchment subarea
runoff which is then coupled to a multi-linear channel flow routing analog to develop a link-node
rainfall-runofl model network. The spatial and temporal rainfali distribution over the catchment is
equated to a known rainfall data source in the catchment (i.e., the rain gauge) in order ta account
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forthe rand ture of rainfall with respect to the measured rain gauge data. (That is, the pre-
cise rainfall inwensity at a specific location in a catchment is written as a [unction of a single rain
gauge data set.) The resulting link node model structure is a series of random integral equations.
A stochastic integral equation is synthesized from the above seties that includes the complete spa-
tia! and temporal variabilities of the rainfall over the catchment. The resulting stochastic integral
equation i seen to be an extension of the well-known single area unit hydrograph method, where
the modei output is a distribution of outcomes when applied to problems invelving prediction of
storm runoff. The distribution of outcomes can then be used to develop prebability distributions for
runoff criterion variables, such as peak flow rate, detention basin velume (among others), whereby
confidence intervals may be developed.

2 Stochastic rainfall-runoff model development

Similar to the development in Hromadka and Whitley (1989), a stochastic integral equation will
be developed under the premise that the uncertainty in the spatial and temporal distribution of
rainfall, with respect to a single known rainfall data source, pg() for storm event i, coupled to
the uncertainty in loss rates throughout the catchment, dominates the rainfall-runofl uncertainty
problem (Naef (1981), Loague (1990), Wilcox et al, (1990}, Refsgaard (1994), among others). In the
following analysis, it is assumed that a quasi-]iuear modeling structure can be used to represent the
rainfall-runoff process. (From the development, the approach applies, in general, to free draining
catchments in which the dominating effects of storage, such as due to dams or other similar effects,
is not a significant influence).

The stochastic integral equation rainfall-runoff modet is developed with respect lo a distributed
parameter link-node model setting, including nonliomogeneous loss functions, multi-linear subarea
runoff response, multi-linear channel flow routing, and the random processes involved with the spatial
and temporal variation of rainfall over the entire catchment. In this way, the randommess of the
problem’s initial and boundary conditions (i.e., the prior and current rainfail over the catchment} is
combined with the integration of the various mutually dependent randem components of the runoff
process, resulting in a stochastic integral equation.

To begin, let the catchment be divided into bydrologic subareas, R;, such as discussed in Hromadks
et al (1987). Each R, is homogeneous in that a single loss function transform, Fj(-), operates on the
subarea point rainfall uniformly. The effective rainfall (or rainfall less losses) is given by €l(-), for
storm event i, where

=] ,/Fj(Pi(x,y,t))d*dY/Ai W
H‘J

and A; is the area of subarea, Rj. It is assumed that the point rainfali can be written as a sum of
fractions of translates of the available rain gauge data:

Pix,y,8) = 3 Ay Pilt— ) (2)
k

where Aixyk is a proportion factor ai coordinates (x,y) for event i, each 8y, is a positive timing offset
at (x.y) for event i, and Pp(u) = 0 for u<0. Combining (1) and (2),

é(t) = fR F; [Z Kot Pig(t_a;yk}] dR; (3}
i k
Let F; satisfy the property that
S @
% k

{An example of such a loss function is F;(-} = C;{), where C; is a constant for R;). This loss function
is analogaus to the Rational Method C-coefficient.

e i A e
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3 Subarea runoff contribution for event i
The unit hydrograph model applied to the runcff contribution for subarea j gives
t b
) . 1 . .
q = f eh(t — s)p(s)ds = / L v Z Nopi FPLt — By —$)) d5is) dRyds (5}
= +=0 3 ) k
= ] Fi(PL(L - ) [ 5 K bile= o) aRide (©)
= Fi(PLlt —s)) ﬂ\}(s) ds {1}
s=0
where

vits) = j 2 e e B Ay (®)

and where @j(u) = 0 for u<0.

A non-linear model for g!(), can come about by the choice of transfer functions ¢;(-) which depend
upen the magnitude of e'( ) one method is to define a set of subarea transfer functions according to
the severity of storm; i.e,, by storm class {e.g., mild, moderate, severe, flooding, etc.). (It is noted
that the ¢;(-) may, in turn, be statistically regressed against catchment parameters such as lag, ares,
etc.

Flnm (7) and (B), randomness is inherent in the ’\xylu and 81yk values, for each storm event i. That
is, for prediction of runofl, the ’\xykj and 6, i values are samples of random variables distributed

as [Auyk) and [Biyk], respectively, where the notation | refers to both the random process and its
distribution.

4 Channel flow routing

In the link-node network model. there is accumulating runcfl contributions at nodes, with flow
routing along each link.

Using a multilinear flow routing analog, without channel losses, (e.g., see Doyle et al (1983),
Becker and Kundzewicz {1987)),

Qi) = qua(®) + Y of Qe+ A) (9)
k

where the link is known given nodes j, j+1; node j+1 is downstream of node j, and the sum is over
the number of flow routing translates used in the analog; and the o}, and A are constants. The

Convex, Muskingum, and many other flow routing techniques are given by (9). The parameters o,
@ are link dependent on the discharge Q!(-) at the j** node, due to the i storm class. For a known
discharge QJ( ), the o’ and A are constant, but their values may differ for different discharges. They
may be defined, in prediction, according to the storm class system used for the ¢"( } realizations.

Thus we can cortelate the a’ and ﬁi value, for each storm class to the k measured rainfall, Pig(-),
so that cv’ and ,Bf‘ can be taken to be (different) constants for each Py(-). Of course, inherent in
these ‘-‘Jk and B{‘ are channel geomettic parameters, among others; however, on a link basis, the a{_
and ﬂ:‘ represent the cumulative effect. of all influences.

5 Link-node model

For subarea 1, contributing runoff at nede 1,
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G = i) = [ FEL - i (10)

Routing Qi{-) to node 2, using (9), and adding g(-):

Q1) = a3t + kE o, al(t+ 81) {11)

Routing Q5(.) to node 3, and adding al(.):

Qhlt) = i) + 2 ol Qi+ 42) 02)
= o) + Z of st +3) + ; kZ af, ol qilt+ 8, +6L) (13)

In general the runofl at node j is given by the upstream runoff conkribution to this node:

Q= dt) + 3 ol g+ A7)

Wit
+ Z: Z aJkn--ll ‘1);‘;-21 q\]i-"z(t +'B{£;I| +’6{ﬁ;-21)
Kivy Kjwa
F o
+3 Y. E(oz’kj Lo, el il ) dite+ BT LB (14)
kjvs Ki-z

Use (7} and (8), together with (14}, to write
Q= [ K- a

+ 3wl f Fioy (Pt~ s)gl_y (s + A )

K3

+ E }: m-] 41, 2 f F,-'z({’ {t— ey 2(34_,94( +',3{'—2 Vs

Kj-3 k-2

+

$ LT Dk ol el [ R -t 8 4+ e

bi-z Wj-z =
= g“ Lﬂ Fm (PL(t — 5))i (s) ds (15)
where
e = Y 3 - Yo ol ol s A+ ALY {16}
kj—y kg

Since the numbers, ail. ﬁ;"j and the function ¢, are all dependent on the storm classes in which the
several upstream subarea realizations (-} belong, y1,(s) is itsell so dependent. Also, the random

spatial and temporal variation of point rainfall for storm event i, bamely P'{x,y.t), is given by the
probability distribuiions of the Agyy and By of equation (2).

b i e s e s
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Note that from Eqs. (2} and (4}, due¢ to the variation in point rainfall, P(x,y,1}, the various sub-
area runoff contributions do not, directly correlate to the rainfall data, P g(t) measured ag the gauge.
Consequently, the various flaw routing parameters and subarea transfer functions all depend upon
she cumulative effects of the upstream /\x . and 8L, values. Indeed, some subareas may have zero
runoff due bo occurrence of negligible ramfall and the flow routing and subarea transfer funciions
will be inaccurate because the only known value is the possibly severe rainfall data P‘( ).

& Simplifications

1. Starm Class Determined by Py(-)

A simplification of Eq. {15) is to neglect the temporal and spatial variation of point rain-
fall, P'(x,y.t), in the choice of storm classes for determination of the of, &, and ¢4, This is
reasonable because the variation of P'(x,y,t) is obviously unknown. A suitable choice for de-
termining parameter storm classes is Lo simply use the rainfall data itself, PL(- ) For example,
if Pi ; ('} is severe, all parameters are based on a severe storm class, and lf P ()} is mild, all
parameters are based on mild storm class values. Using P! () for determining the storm class
simplifies 4, , as given by (16), in that the o?k, A, and 3 now only depend on the storm class
of Pi().

This model is still mulii-linear, due 4o the use of the storm classes, but differs from the
mode] of (15) and (16), in that the effects of sampling the varions distributions of [Ax,] and
[8.4y3] are essentially ignoted.

2. Single Storm Class

A Turther simplification is to assume that the rainfall-runcff model will be used ouly within a
single storm class. This is the case typically considered {or flood control purposes, where only
severe storm data are used for analysis purposes; here the coefficients aH,( and J are the same
for all the storms considered.

[X]

. Runoff Prediction on a Storm Class Basis

In prediction, the distribution of Pi(x,y;t) is unknown even if the future measured data T3(-)
is assumed knowa, In examining {8), (15) and (16), the possible outcome for runoff, at node
), given the simplifications of 2 above, is a distribation of realizations given by [Q°(-)] where

CXOED I BRI RTORS an
ri 5=0

where {$7(s]] is the stochastic process of realizations fromn storm class o, where for node j, the

coefficients ¢ and B in (14} are for that storm class, and from (8) the distribution Twp(-)) is
given by

(@) = j}‘:[xxyk] #0105 — Pup )R (18)

(Again |] refers to both the random process and its distribution, respectively. Using the nota-
tion |-) aids in identifying stechastic variables in the mathematical development and subsequent
equations.}

The expectation of (17) is:
HECEDY j Py (Pt~ ¢)) Biests)) ds (19)

Equation {19) forms a basis of the unit hydrograph proecedure commonly used for flood control
design and planning.
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4. Distributions of Runofl Criterion Variables

Assume a free flowing catchiment such that the modeling assumptions leading to (15) and
(18} applies, Further assuine ihat each loss fanction Fi (') = ax F(-) + by for a single loss
function, F(-). That is, each subarea k loss function, Fi.(-}, is a linear function of a reference
loss fumnction, F(-). Given catchment runofl at a stream gauge location, with runoff Qig(-) far
storm j, and given associated rainfall, Pis{—), (15) can to used to relale runoff to rainfall by

Qi) = j_ﬂ F (Pi(t —s)) ®i(s) ds (20}

where $'(-) is a transfer function for storm event i, and it is required that runoff at QL(-) does
not occur in time prior to initiation of rainfall, Pi{-). From (15), @'(-) includes all the propes
samplings of the various mutually dependent random processes and variables, for storm i, used
in the previous stochastic integral equation development leading to {15).

Since the only available rainfall data are from the single rain gauge, stortn classes are defined
on that rain gauge data. For this application, only “severe” storms are being considered for
flood protection purposes. Define the storm class § by

S = {PL(-)[PL(-) is tonsidered severe; i = 1, 2, ... m) (21)

Far each event Pis(-) € §, tesolve the unigue sransfer function $'{-) by solving (20), resulting
in what are assumed to be m equally likely realizations of the transfer function. Define the
discrete distribution [®'(.)] by indicating its equally likely values:

[@()] = {#() 1, 2, ..m} (22)

where each @ (-} in (22) is a solution of {20) for a PL{-) €5. Note that in (22}, the distribution

[#(-)] is dependent upon the loss function, F, chosen.

Each sample &(-) from [&{-)] is from all the mutually dependent random variables and
processes incorporated in {15). Additionally, as with any stochastic process, the discrete
distribution [®{-}], in {22), depends on the sample size, m, available from the rainfall-runoff
data.

1t is noted that the assurapiion that each Fi(-) be a linear combination of a reference F(-}
may be accommodated by directly retating effective rainfall, as a point function, in (1}, by the
analogous formula

q0 = T [ gy PPy = By

In prediction, where a future storm Py{-} € § is contemplated at the rain gauge, the
estimated distribution of runoff realizations at the stream gauge is given by the stochastic
integral equation,

[Quy) = f ;D F(P3{t — ))&} ds (23)

where [Qz{-)] i# the distribution of cutcomes, based on the available rainfall-runoff data. For
m discrete events in [$(-)], there will be m discrete ontcomes in [Qg(-)]. Oftentimes a filter is
used with [Q;(')] such that for each Q3(-) € [QZ()],

, Qg(t), if positive
W = (24)

0, otherwise

where Q;'(-) refers to a filtered realization of Qg(-).

(=4

o
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For the criterion variable of peak flow rate, Qp, the distribution [Q,] is determined by the
operator 4, on [Q;‘(-)], where

Qs = AMQLE) (25)

where [Qp] ie the probability distribution of peak flow rates, A, is the operation of finding the
peak flow rate from any realization distributed as [QE‘(-)]. Coafidence intervals can then be
compuied for [Qp] by the usual methods.

As another example, let A, be Lhe operation of finding the maximum ponded depth, 7, of
floodwater in a detention/retention basin. Then the distribution of basin peak fiood depth,
[1], is similarly given by

M = A2dQ (N (26)

Note that since Az is nonlinear, the expectations are related by

E[] = E(A2(Q5 (1) {21)
where
E(A[Q' () # A2(EIQS (0D (28)

. The Unit Hydrograph Method (Single Area}

From (23), the well-known single area unit hydrograph {(UH) method may be developed by
using the expectation, for the case of prediction of funoff for ranfall event P5{-),

MO0 = [ (R -o) Blote) es (29)

where E[Qz(]] is a single runoff hydrograph {usually filtered); and E[®(-)] is the calibrated
transfer function, In order for E[®(-)] to be a UM, it needs to be normalized, which is done
by letting

0= [ B (30)

and taking the UH to be % E|2(-)], and the loss function is also modified by multiplying by
the constant 1.

. Transferability of the Stochastic Integral Equation Method

The applications 4 and 5 develop a stochastic integral equation, and a UH method, at a stream
gauge location given available rain gauge data.

Methods have been in use for decades for transferring UH relationships to locations where
siream gauge data are not available [for example, see Hromadka et al, 1987], and need not
be discussed here. In order to transfer the stochastic relationships of variability in the [®()],
appearing in (29), the same UH transferability techniques may be used. That is, by scaling
the distribution of [®(-)] outcomes will respect to E{®{.)], then as E{®{-)] is transferred in
UUH form, so is the distribution [®(-)]. This approach has been implemented in the recent
hydrology manuals for the counties of Kern (1992) and the largest county in the mainland
United States, San Bernatdino {19084). The approach is currently being developed for the
Hydrology Manual of the County of San Joaquin (1994).
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Figure 1. S-graph weighting for Southern California (note masses of S-graph do not necessarily equal 1.0).
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Figure 2. Distribution of flood control basin runoff volume using Figure 1 S-graphs.
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7 Application

A distribution of §-graphs has been developed from catchment rainfall-runoff data in the preparation
of the San Bernardino County Hydrology Mannal {(1994) (see Figure 1). Each S-graph is considered
to have the probability weighting shown in Fig. 1. In the estimation of runcff, each S-graph is used,
in turn, to develop a respective runoff hydrograph with a probability weighting equal to the parent
S-graph weighting, If peak flow rate is of interest, each runoff hydrograph peak flow rate value is
considered a sample with the weighting equal to the S-graph weighting. A probability distribution
function is then contemplated for the sampled data (and weightings) and inferences drawn.

For example, for a detention basin problem, the maximum storm event runoff volume is of interest
and its value depends upon the sampled S-graph of Fig. 1. Figure 2 shows a typical distribution
of detention basin maximum volumes, using Fig. 1 5-graphs, for a single hypothetical design storm
event. The expected value, and B5-percent upper confidence limit, of maximum detention basin
volume {for the subject design storm event) is included in Fig, 2.

8 Conclusions

The stochastic integral equation rainfall-cunoff model is developed with respect to a distributed
parameter link-node model setting, including nonhomogeneous loss functions, multilinear subarea
runoff respense, multi-tinear channel flow routing, and the random pracesses involved with spatial
and temporal variation of rainfall over the entire catchment. In this way, the randomness of the
problem’s initial and boundary conditions {i.e., the prior and current rainfall over the catchrent) is
properly accounted for and the integration of the various mutually dependent random components
result in the stochastic integral equation. The applications considered in this paper derive the classic
unit hydrograph method as the expectation of the stochastic integral equation, and also discuss
transferability methods to apply the uncertainty distributions at locations where runoff gauge data
are not available. Use of the stochastic integral equation method is only marginally more difficult
then the usual unit hydrograph method for free flowing catchments, and provides an estimate of the
unceriainty in the usual estimates for criteria variables.
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