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Expansion of the CYBEM into a series
using fractals
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The study of fractals, such as leading to the Koch snowflake, among other
graphical displays, has advanced considerably in the last several years. In this
paper, the development of triangular fractals that geometrically sum into an area
whose boundary is a function, of a specific type, is used to expand the complex
variable boundary element method (or CVBEM) into a series.
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INTRODUCTION

The complex variable boundary element method
(CVBEM) has been the subject of several papers and
books."? The basis of the CVBEM is the use of the
Cauchy integral equation to develop approximations
of two-dimensional boundary value problems involving
the Laplace and Poisson equations.

An advantage of the CVBEM is the property that
the resulting approximation function, (z), is analytic in
the simply connected domain, , and continuous on the
problem boundary, T. Thus, w(z) $(z) + i(z), where
é(z) and ¥(z) are the potential and stream functions,
respectively, and satisfy the Laplace equafion in Q.
The general CVBEM technique is briefly described in
the following discussion.

Let w(z) = ¢(x, y} + iy(x, y) be a complex variable
function which is analytic on I' U §), where Q is a simply
connected domain enclosed by the simple closed
boundary I" (Fig. 1). We define ¢(x, y) to be the state
variable and (x, y) the stream function, where ¢ and
*) are two-dimensional real valued functions. Since w is

1alytic, ¢ and v are related by the Cauchy—Reimann
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and thus staisfy the two-dimensional Laplace equations
in £, namely

d2¢ 8¢ 8‘1,: 627,(;
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The Cauchy integral theorem states that if we know the
value of the complex function w on the boundary I, and
if w is analytic on T U2, then w in N is given by

_ 1 [ e(g)dC
w(z)—ﬁjr (~z

The CYBEM forms o, an approximation of w, using
known values of either ¢ or 9 on the boundary T, and
uses the Cauchy integral (eqn (3)) to determine
approximate values for w on QU The approximator,
&, is a two-dimensional analytic function in £ that can
be differentiated, integrated, or otherwise manipulated
to obtain higher order operator relationships.'

Let the boundary I" be a polygonal line composed of
V' straight line Segments and vertices. Define nodal
points with complex coordinates z;, j=1,...,m on T’
such that m > V. Nodal points are located at each
vertex of I" and are numbered in a counter-clockwise

0 and =0 (2)

,2€R, z¢ T (3}
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iv 4 (2} = §(z) + 1y(z)

X

Fig. 1. Problem domain and boundary.

direction. Let I'; be the straight line segment joining z;

and z; so that

Thus, m boundary elements, I';, are defined on I', where
I',, connects nodal coordinate z,, and z; (Fig. 2). The
CVBEM defines a continuous global trial function,
G(z), by

G(z) Z Ni(z

where, for a piecewise linear polynomial global trial
function, and j = 1,...m, N;(z) is given by

)& + i) {4)

Z—Zj_[
zel,
zj =z -1
Ni(z) =4 0 z¢ UL, (5)
=

and where cﬁj and 1,!3_,- are nodal values of the two
conjugate components, evaluated at z. An analytic
approximation is then determined by

o 1[G
o) =g | TLStizeR, 2T (6)

If we let g; ;. be the difference in the polar coordinate
angles defined by nodal point coordinates z;,; and z,
and z; and zg, for zy in 2, then

m

&(zp) = Z{ _H-] j)

=
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Fig. 2. Discretization.
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Fig. 3. Graph of A(x) function, for nodes /, j, and k.
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where w; and wj,, are nodal values at coordinates z; and
Zjy1, and

+ig; ji1 (8)

Since usually only one of the two specified nodal values
(475}, 1,)7}) is known at each z;, j = 1,...,m, values for the
unknown nodal values must be estimated as part of
the CVBEM approach to developing an analytic
approximation function. The CVBEM develops a
matrix system for use in solving for these unknown
nodat values,! solves the resultant matrix system, and
uses these nodal value estimates along with the known
nodal values in defining &(z;) in eqn (7).

FRACTAL TRIAL FUNCTION REPRESENTATION

In this paper, the CVBEM continuous global trial
function, G(¢), is replaced by a rewriting that is
analogous to the triangle fractals used in graphical
displays.

In our case, we use the symbol A( z) in describing the

incremental change between the value of a straightline
interpolation between consecutive nodal point values
&; and ¢, at x = x;, and the true value of ¢ at x = X,
denoted by ¢;.

That is, for nodes { and j being consecutive nodal
points on I, in the counter-clockwise path of contour
integration, the addition of node k inbetween nodes §
and j is accomplished by adding to the global trial
function, G(¢), the incremental contribution from the
newly added node j. Given coordinates z;, z;, z; for
nodes i, J, k, respectively (see Fig. 3),

0; z ¢ the boundary element
containing nodes 7 j

k z-—-1z
Alz) = —: z between nodes i,k and z€ T
i Z — Z;
Zj"-‘ K4 . -
;  zbetween nodes k, jand z €1
Zj—' Zp

9

k k
Hereafter, A(z) will be simply written as A(z) as it is
i ij
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Fig. 4. G(C)=¢;+IAI¢3+]A2¢3+2AI¢4. L is domain

length; x; are nodal point coordinates, with values ¢(x;) = ¢;,

i=1,...,4.

understood that a function of z is involved. Also note

k
that A has nonzero values only between nodes { and j
iy
onF.
From the above, the value of ¢(z;) is ¢;. Straightline
interpolation between nodes 7, f gives an estimate, ¢y, at

z; of (see Fig. 4)
M) = ¢ (2j = j:) +¢ (? — Zf) (10)

Zj 5 Z;

which would be the value of the global trial function at
7y, G(z;), for the case where node k is not part of G(¢).
G(¢) can be extended to include a node & contribution
by simply adding the incremental contribution of ¢,

Gmﬁcm+§m—@) ()

The global trial function, G(¢), can be written as a sum
of nodal incremental contributions by, for the case of an
eight-node approximation (see Fig. 5),

G(Q)= A b+ Al - 92+ Ales =)
+ Alds—d0) + Alds - b5) + Alde — o)
21 13 32

7 . 8 .
+ 2A4(¢7 — 1)+ ﬁ((f’s - @g) (12)
1
In the above equation, iAl refers to the initial case of

having a constant-valued G(¢)} defined on I', where

b 4
35 b 2 ¢1 '
Ahal BT %3

X

o ¢y

G(¢) = ¢, for all ze ', due to having only a single
node (#1) defined on I AIso,knote that the order in
which the terms involving A functions appear is
ij

important due to the definition of where nodal points
occur on I'. Thus, the above sum of terms cannot be
arbitrarily rearranged as the addition is not commuta-
tive. Given a specified sequence of nodal point insertion
on T, such that it is understood where subsequent nodes
are to be added on I, the index notation of i, j, k can be
simplified to simply using 1, as it is known that node k is
to follow node i (in the counter-clockwise direction) on
T, and k is known by being the &th index term. The node
sequence, S, of Fig. 5 can be written as simply
§={1,1,1,2,1,3,2,4}. In the following, it will be
assumed that a node installation sequence, S, is defined
so that node numbers /, f are understood when given
node number k. Consequently, G({) can be written for
m nodal points defined on I' according to the above
sequence, S, by

m

GO=S" A (- (13)

k1 T Ske

where s, is the kth term of §, s,,,, = 5|, and necessarily
¢, = 0 for the initial case of k = 1. Equation (13) can be
now rewritten into the simpler form,

60 =Y A~ (14)
k=1

where it is understood that a nodal point installation
sequence, S, is defined, and nodes 7 and j, as associated
with node k in the function, are known given node k.

From the abave, the extension of a complex variable
function, w(z), defined on T is given, for m nodes on
T, by

Q)= Alwr ) (s)
kel

where o(2;) = wy, k=1, 2,...m; and as before, neces-
sarily & = 0.

APPLICATION TO THE CVBEM — NEW SERIES
EXPANSION

Using the above expression for the global trial function,
G(¢), the CVBEM approximation function can be
written as, for mnodes on I,

. 1 G(¢) d¢
iz = Ini Jr £—z
, ng(wk—*@k)df
L k=1
L = . zeQ (16)

T 2mi
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or

k
, 1 & . A d§
mﬂ_iﬁg;@k W{Lc-f zeq (17)
The above writing provides a new series expansion for
the CVBEM approximation function. For the case of
w(z) being analytic on T, then w(z) is continuous on I’
where G(() — w({}) on m— oo (and the arclength
between successive nodes — 0), and from Schauder’s
theorem,’

k
1 & . Adg
=g -0 | £ zen 09
In the above equation, the integral of
k
J A d¢
r¢-z
is readily determined as
k k k
AdC . AdC . AdC
J

X L 3o
Jr ?f§=_[r ;—Z=L CJ—Z,L: Cj-z

=(z‘”)w44~ﬂ—hﬂawd)

Iy —Z;

N (Z‘zf)an(z,_-z)-m(zk—zn (19)

Zk—Zj

where In is the complex logarithm function,

BINARY TYPE NODE SEQUENCES

If noda! placement on I is specified as a partitioning of
T according to a given proportion, the above series may
be simplified. For example, let r be the partition fraction

of 1f2, which implies that I' will be subdivided into
boundary element lengths of binary proportions. That
is, I’ is subdivided into halves, then quarters, then
eighths, and so forth. Then given an initial ‘seed’ nodal
point location on T, coordinate z,, and the parition
fraction, r, the previous series expansion is readily
determined.

CONCLUSIONS

In this paper, the development of triangular fractals that
geometrically sum into an area whose boundary is a
function, of a specific type, is used to expand the
CVBEM into a series. In this paper, a CVBEM series
expansion is developed where each additional term of
the series is the result of integrating a fractal contri-
bution of the increment between the true nodal value
and the previous approximation of the nodal value.
Research is currently being conducted in the extension
of these results in new applications and theorems.
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