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1. Introduction

The complex variable boundary element method
(CYBEM)' uses analytic function theory for the
approximate numerical solution of two-dimensional
mixed boundary value problems for Laplace’s equation,
a major application being the steady-state problems of
heat conduction. The approximate solution obtained is
in terms of a series:

N

z alz — n}loglz — zy) (n

K=1
To use this series it is necessary to define precisely the
logarithms appearing in it. To put this in context, an
outline of the derivation is given below.

Although there are different ways to use the CVBEM
to solve a given boundary value problem, the logarithms
of (1) occur in most. For example, in Ref. 2 a series
representation for the CVBEM global trial function is
developed, which is the function furnishing the
approximate solution for a specific boundary value
probiem, this series having the property that the effect
of adding another nedal point is to add a fractal-like
term to the series for the global trial function. This
derivation is done under the assumptions that the
boundary of the domain be approximated by a polygon
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joining a sequence of nodes and the solution function
w(z) be analytic on the boundary. These assumptions,
and the series obtained, are not the same as in this paper.
However, the crucial fractal-like term in the series of Ref.
2 (equation (19)) is a combination of functions of the form
{z — z;)log(z — z,), and the understanding of the prop-
erties of these functions is therefore crucial to the results
of Ref. 2.

2. Problem statement

The problem we will consider can be physically
interpreted as the steady-state heat distribution of
temperature U in an open set Q0 in the plane, which we
will take to have no holes, ie., to be simply connected,
with boundary T. The Dirichlet problem is, given a
function g continges on [ that represents the
temperature prescribed on T, find a solution U that
satisfies Laplace’s equation

U U

I Y ) 2

ax? M ay? @
and equals g on the boundary:

Uiz)=g(zyforzon T {3)

In addition to the Dirichlet problem, the CYBEM can
be applied to mixed boundary value problems. An
example of a mixed problem that often arises in
engineering is to have U prescribed on part of the
boundary and the heat flux, or normal derivative of U,
prescribed on the remaining part of the boundary. Most
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of what is done here also will apply to mixed boundary
value problems, but will be given in terms of the Dirichlet
problem for simplicity.

The famous relation of the Dirichlet problem with
analytic function theory is furnished by the theorem that
U satisfies equation (2) in the simply connected domain
Q, ie, U is harmonic in €, if and only if there is a V
harmonic in Q with F = U + iV analytic in Q (Refs. 3-5).
Consequently the full power of the theory of analytic
functions of a complex variable can be used in solving
the Dirichlet problem in two dimensions (see, for
example, Ref. 4).

The boundary I" of Q will have a parameterization 7,
a function mapping the interval [0, 1] onto T,

y:[0,1]-T

The curve I' will be taken to be a simple closed curve,
ie., y(s) # y(t) for s 5 t except in the case where one of s
and ¢ is 0 and the other is 1, whereupon y(0) = y (1). The
curve will also be assumed to be piecewise smooth so
that the paramecterization of ' can be taken to be
piecewise continuously differentiable with the derivative
(1) existing except for a finite number of corner points
{¢1, €2, ..., Cp}. Al a corner point ¢;, the derivative is
assumed to exist from the right as y( 1) and from the
left as y'(c;) with (/) + y'{e;) # 0, le the corner is
not a cusp.

3. Derivation

Choose points O =1, <, < ...I,<f,,;=1in [0, 1]

and apply y to obtain the points

2y = 7”1)’ R Zn = 'y(t.nj’ Zpr1 T4

on I'. These points divide the curve I' into arcs I';, which
are the image of the interval [¢;, t;,,] under y

=90t t441i=1,2,...,n

with endpoints z; and z;, ;.

Consider a set of compiex numbers g,,..., 4, and
define the function § on I by the complex analog of linear
interpolation

-z z—Z;
RChEA3) ZJ+11+ . ( ). for zin T
I i I

(z j T Zi+ 1) (

g(z) =
Ziv1— Z) @

Use this function and the line integral to define
o= | 2 (5)
r{—z

It is an elementary property of the integral in (5) that
the function h(z) is analytic for z in Q. The notation
{915- .., 4,y is meant to suggest that the ¢;s are numbers
that are chosen so that the function h(z) has real parts
approximating the given real value function g on I'. The
maximum property of harmonic functions®>*® then
guarantees that the real part of h(z) is close to the solution
U of the Dirichlet problem in all of .

Substituting {4) into (5) gives

1
hz) = Z 2L d{ (6)

t—z
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For { on T';, write

Aeey (C“Z+Z_Zj+1)
1= gj{ (ZJ Ziy 1) }

+gjﬂ{_€—z+z uz"')}

(;+1 J)

and substitute into the integral to obtain

2nik(z) = i |: u+gj+l( (Z—Zj)_J

(Z _,+1) Zi+1 _Zj)

(8)

g —
Note that the coefficient multiplying the mtegrdl in (8) is
g(z) only if z belongs to I';; otherwise it is a linear
extension of § from the arc I';.
Example 1 below shows that care must be taken in

evaluating the integrals J appearing in equation

T {—z
(8).

Example 1
The domain Q 1s the interior of a square
Q={x —-1l<x<l, —1<y<l1}

Let 2z, =(1,1), z; =(—1.1), z3=(~1,-1), z, =
(1, =1), z5 = z,, the vertices of the square, be the points
chosen on I, so that the arcs I'; are the sides of the
square. Choose the numbers g, =g, =g, =g, =1 so
that g(z) =1 forallzon T.

The integral (5} represents h as the integral over the
boundary of the analytic function, which is identically 1
on £2; thus for z in Q the Cauchy integral formula gives

However, from equauon {8)
hiz) = — 9
)= i= 1 27 C —z ®)
If the integrals in (9) are carelessly evaluated as
dC @
n{—z

for j=1,2,3,4, then substituting (10) into (9) gives
the incorrect value:

= log (24, — 2) — log z; - 2) (10)

2mih(z) = log(z, — z) - log(z, — 2)
+ log(z; — 2) — log(z, — 2)
+ log(z, — z) — log(z5 — 2)
+ log(zy — z) — log(z4 — 2)

To understand why this error occurs, a review of some
basic facts about logarithms of complex numbers is
NECcessary.
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An analytic logarithm is an analytic function f,
defined on an open subset G in the complex plane, with
the property that the derivative of f satisfies

f@)=1/zforzin G {11)

It is important to note that to completely specify a
logarithm, its domain G must be given. It will be seen
that there are restrictions on the possible domains; for
example, implicit in cquation (11) is the restriction that
z =0 not belong to G.

To construct a logarithm, begin with the equation

D=z zinG (12)

i.e., by considering the logarithm as an analytic inverse to
the exponential function. The equation e” = z has, for
z # 0, the solutions

w = log|z| + #arg(z) + 2kn) for k=0, +1, £2,...
(13)

Here, arg(z) is any one angle in a polar representation of
z, and the infinitely many other possible values for arg(z)
are indicated in (13). For a given z, the value of the
logarithm f(z) must be one of the w values in the set of
values given in (13).

A general theorem (Ref. 3, pp. 39-40, or Ref. 6, pp.
85--96), which is used in defining many inverse analytic
functions, applies to the problem of finding an analytic
solution to (12). The theorem states that a solution to
(12) that is continuous on G is also analytic on G. Because
the function log |z|, appearing in (13), is continuous at
any nonzero z, the problem of defining a logarithm on
G lies entirely in definining a continuous argument
function arg(z) for z in G.

The simplest case, discussed in most texts, is defining
the principal branch of the logarithm. Let R™ = {(x, 0):
x < 0} be the nonpositive real axis and let G be the set
of all complex numbers not belonging to R~

G=C-R" (14}
Specifying
—n<arglzy<n (15}

is easily seen to give a continuous argument in . The
principal branch of the logarithm, often denoted by
Log(z), is the function defined on G, given by {(14), by
Log(z) = log |z| -+ arg(z), where arg(z) satisfies (15). This
function Log(z) is analytic on G and satisfies (11) and (12)
for zin G.

The way in which the domain G is specified in (14) is
typical of the general situation in which a non-self-
intersecting curve C joining 0 to oo is given and G is
defined to be all the complex numbers not on the curve.
The curve C is a branch cut for the logarithm, and a
logarithm defined using the curve C is a branch of the
logarithm. On this simply connected open set G, a
theorem applies (Ref. 3, p. 202) to show that there is a
branch of the logarithm defined on G. To see how the
branch cut interacts with the determination of a
continuous argument, select one point z; in G and choose
one of the possible values for arg(z,). Any point z in G
can be joined to z, by a (polygonal) curve C, lying

entirely in G, because G is connected. The requirement
that arg(-) be continuous means that in moving from z,
to z along C, the values of arg(-) will be specified in a
unique way because at each point all the possible values
for arg() differ by some multiple 2kn of 2x, and a
continuous determination of arg(") cannot jump from one
value to another 2k # 0 distant from the first.

A similar argument using the continuity of the
argument can be used to characterize all the logarithms
on G = C — C: Suppose that f and g are two logarithms
on G = € — C, ie, two analytic functions satisfying (11),
or equivalently (12), on G. From (13), for each z in G
there is an integer k(z) with

f2) = glz) + i2nkiz) (16)

At this point in the argument it appears that the integer
k = k(z) possibly depends on z, as the notation indicates.
However, k(z) = [ f(z) — g(z)]/2xi is continuous on G and
integer valued, which is only possible on the connected
set G if &(z) is constant. Thus any two logarithms on G
differ only by a constant i2nk for some fixed integer k.

The domain G = C — R~ for the principal branch of
the logarithm Log(z) is a largest domain on which a
logarithm can be defined. To sec this suppose that g is
a logarithm defined on G', a domain strictly larger than
G. The restriction of g to G is a logarithm on G, and by
the result described in the paragraph above, there is an
integer k with

giz) = Log(z) + 27k {17)

for all z in G. Because G’ is larger than G, there is a point
z, #01in R™ at which g is continuous, in fact analytic.
For & real and positive, gz, + i) = Log(z, + ie)
+ 2kmi converges to im+ i2nk as e tends to zero,
while g(z, — ig) = Log(z, — ig) + 2nki converges to —in
+ i2mk; thus, contrary to assumption, g is not continuous
at the point z;.

Similarly each domain that is the complex plane
minus a branch cut is a largest domain on which a
logarithm can be defined.

Example 2

Consider the domain G defined by removing the spiral
curve C given by

o) =0 0<80<w

from the complex plane. To determine a logarithm on G
begin by taking the argument of 1/2 to be zero.
(Therefore all points on the interval {(x,0):0 < x <1
also have argument zero.) From the requirement that
arg(’) be continuous on G, it follows that arg(3/2) = 2r,
arg(5/2} = 4n, arg(7/2) = 6m, etc.

The complex variable version of the fundamental
theorem of calculus states that if f is analytic on an open
set ¢ and a curve I lies in G and joins z; in G to z, in
G, then

'[ F2)dz = flz;) — f{z1) (18)
-

The proof for a piecewise smooth curve [' simply

Appl. Math. Modelling, 1994, Vol. 18, August 425



Complex variable boundary element method: R. J. Whitley and T. V. Hromadka I

involves passing to the parameterization of the curve
y:[0, 1] = I' and applying the real variable fundamental
theorem of calculus to the real and imaginary parts of
the derivatives of f(p(t):

1
j Jlzz = J Sy 0de = f({(1) - f(3(0)
r ]

Example 3

Example 1 is reconsidered and the correct value for h
is obtained,

First consider the computation of h(z) for z=0. In
Example 1, three sides of the square lie in the domain
of the principal branch of the logarithm Log(z): I,
joining z, =(1,1) to z,=(-1,1), T3 joining z, =
(-1, -Dtozy=(1, —1),and T, joining z, = (1, — 1) to
z, = (1, 1). Therefore (18) can be applied to show that

at .
o n=Loglzj) — Loglz), j=1,3,4 (19
nt=0
To evaluate the integral (19) for j = 2, a different branch
of the logarithm must be chosen, one which is analytic
in a domain including the curve I',. One choice is to
take as a branch cut the non-negative real axis
R* ={(x,000<x} and G=C—R". A continuous
branch of the argument may be specified on this domain
by demanding
0<arg(z) <2n
Denoting the logarithm obtained in this way by log ™ (z):
d
B log*izy) — Tog"(z2) o)
-0

Now
Log(z,) = log./2 + i3n/4 = log™ (z,)
but
Log(zs) = log/2 — i37/4
log*(z5) = log\/2 + i5n/4
Substituting into equation (9} gives
2mih(0) = Log(z,) — Log(z,) + log *(z5) — log* (2,)
+ Log(z;) — Log(z,} + Log(zy) — Log(z,)
= i5n/4 - (- 3in/d) = 2=ni
and A0} = 1 as required.
For z # 0 inside the square, the choice of logarithms
can be thought of in terms of translating the origin to
the point z and using branch cuts such as the curves R~

and R used in the case z = 0. With the proper choice
of branch cut,
dl ) )
o =loglz;,, — z) - loglz; — 2) (21)

rjg““z

where log/({ — z) denotes a branch of the logarithm that
is analytic as a function of { in a domain containing the
curve I';.

The discussion has so far focused on evaluating h(z),
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as given by equation (5), for a point z in Q. However, to
solve the Dirichlet problem using the function » one must
compute the limiting values of (2} as z in Q approaches
a point 2’ on T, for it is the real part of this limiting value
that is required to be the boundary value g(z'). Denoting
the limiting value by h.(z'), it is given by the
Sokhotski—Plemelj formula (Ref. 7, p. 32; Ref. 4, p. 94;
or Ref. 3).

1 i) d
hi(2) = [1 — (0()/2n)14(z') + 2—"j 90 C (22)
i Jr (£ —2)

(
where, as above, 8(z') is the interior angle the curve makes
at the point z’, which is « unless 2’ is a corner point. (The
hypotheses under which this formula holds are satisfied
by the function § given by (4).)

A problem that arises in applying the formula (22) is
when the integral

1 d0d

2ri Jr (( — 2}

is reduced to the forim of equation (R), the integral
dl

.L, {—7

in that sum does not exist in the usual sense for 2’ on
T';. To understand how this problem is surmounted, first
consider some facts about improper integrals given in
Example 4 below.

Example 4

{a) There is a technical aspect relating to how an

improper integral is defined in calculus that will be

important in what follows. To illustrate this, consider the
1

integral x~23dx. This integral is improper because

-1
the integrand x~ %3 is unbounded. First, the point 0

where the integrand becomes unbounded is singled out
and the integral is defined as

1 Q 1
J x~3 dxzf x™33 dx+v[ x"¥dx (23)
1

-1 0

if both integrals on the night-hand side of (23) exist.
Second, each integral on the right-hand side of (23) is
defined in a similar way, namely:

0 &
J xmdx:limJ‘ x 3 dx

-1 e=0% o -1 (24)
= lim 3((—g)'® — (=1)"/%) =3

>0t

1 1
j x" 23 dx = lim'[ x "33 dx
0 0" Je (25)

= lim 3(1' — (&)%) = 3

e=~+0%t

so that the integral in (23) exists and has the value 6.
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(b) As another example, consider the integral
1

J-.1 x~1dx (26)

As in (a) above, this integral is defined as the sum of
two integrals:

1 0 i
j x"‘dx=J' x”ldx-i-f x tdx 27)
-1 =1 13

But in this case,

1 1
j x ldx= h'rnj x"Ydx
)] e—=+07T Jsg (28]
= lim (log(1) — log (g)) = o
E—+0O+

and the other integral in the right-hand side of (27) also
does not exist. Thus the integral in (26) does not exist in
the usual sense. However the integral (26) does exist in
another sense, that of the Cauchy principal value. The
Cauchy principal value, or principal value, of the integral
(26) is defined to be the limit, if it exists, of

1 —E 1
j x ldx = lim I:.[ x"‘dx+j xldx:I
-1 =0+ -1 &

= lim [log{| &) —log {¢)] = 0
£=20+

(29)

The difference between the usual definition of the
improper integral and the principal value is that in the
usual definition the limits in (24) and (25) are taken
independently, but for the principal value there is only
one limit, as in (29), describing the behavior of the
integral near the point 0 at which the integrand is
unbounded.

The principal value of the line integra

d
[ C~-2) GO

for z” on the arc T’ is defined, analogous to example 4{b}
above, as follows: Suppose that z' lies on T'; but is not
either of the endpoints. For any § > 0, let B(z, 5} be the
ball B(z, 8) = {w: |w — z'| < 8} and consider

. d¢

lim 31

a0+ Jg, (L —2) Gh
where C;=T; — B(z, 8). For a smooth curve I"; and
small ¢ > 0, the boundary of the ball B(z', §) hits T'; in
two points {; = y(t,) and {; = y(t,), where z’' = y(¢') and
O<t;j<ry <t <1, <tjp, <1 (without loss of gen-
erality supposing that neither ¢; nor ¢;., is 0 or 1). Of
course {; and 7, depend on 4 for i = 1, 2. In terms of the
parameierization, equation (31) defines the integral (30)
by

i oYty dt J bt y(t) dc]
1 A 32
s U -2t wo—z G2

Iflog {{ — 2z} is a branch of the logarithm that is analytic
as a function of { in an open set G containing C,,

14.5,7

equation {32) can be evaluated as
log, (z;11 — 2} = log,{z, — ) + i®() {33)

where ©@(z') is the interior angle the curve makes at the
point z'.

How is the required branch of the logarithm in (33)
obtained? What is needed is a non-self-intersecting curve
P_., which joints z' to infinity and does not intersect Q
or I" except at the point z'. That such a curve exists for
the simply connected domains with smooth boundaries
that we consider here can be shown by an argument such
as that given in the proof of lemma 1.2 in Ref. 6 {p. 551),
but for any domain arising in an application this will be
obvious so we do not give a proof. For such a curve
then, the curve B,., which is the translation by z' of P,.
to the origin,

B.=P, 7 (34)

will be the branch cut that is used to define the logarithm
in (33), there denoted by log ( — z).

There is one more requirement that must be placed
on the branch cuts and logarithms that are used to
evaluate (31) as (33). This restriction is necessary because
the function given in (33) displays a potentiaily
complicated dependence on z’ because the branch cut for
the logarithm in (33), and therefore the logarithm itself,
changes with z'; for example, it is not even clear that (33}
represents an analytic function in z'. This problem can
be eliminated if the branch cut P_ is chosen so that it
also works as a branch cut for any z” on T that is close
enough to z'; that is to say that the curve

Pz'__zr+_zu

intersects QoI only at the point z".

Example 5

(a) Consider the unit disk Q= {(x, y):x* + y* < 1}
and choose the point z" = (1, 0) on I'. The non-negative
real axis is a branch cut B_. for z’ that will also work as a
branch cut for exactly those z"=(x",»") on T,
(x")?* + ()? = 1, which satisfy x” > 0, Similarly, given
any z' on I, the line from z’ to o in the direction of the
normal to the circle at z° furnishes a branch cut that
works for all z” in the semicircle whose midpoint is z'.

(b} Consider, as in Example 1, the domain £ which is
the interior of a square.

Q={xy:—-1<x<l, —1l<y<l}

At a corner on I, say 2’ = (1, 1), the line connecting '
to infinity parallel to the real axis is a branch cut for
log({ — 2'), but this line will not work as a branch cut
for z" ={(e(—1)+ (1L —e)hl), 0 <e =<1, which is arbi-
trarily close to 2z’ for £ small. However, the line connecting
z' to infinity making a 45° angle with the x-axis will work
as a branch cut for all the points on T either of the form
(x,1), ~1<x <1, orof theform (L, y), ~1 <y < L.
With this final requirement on the branch cuts in
place, the integrals in (8) can now be evaluated (for z on
T') for a mesh of points on " that are close enough
together. To see this, note that by a compactness
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argument there is a § > 0 and branch cuts
{B, =P, —z:Zinl}

sothatifz"ison I and [z" — 2| < §, then B,. also works
as a branch cut for log({ — z”). When the curve is divided
into the nodal points {z,, z,, ... z,}, choose these points
so close together that B, will work as a branch cut for
any point on the arc I';_, as well as the arc I';. When
that has been done, the Cauchy principal value of the
mtegral (30) can be evaluated as

logiz;, — 2') — logj(z; — £} + iO() (35)
where

log{{ — z') denotes the log with branch cut B,

(36)
Use (8) to write the integral in (22}

[0l 5],
r(—2) j=1 J(zj__zj+1)

+ gmMM LS

(zjr1— 2 .:r,f —z

(37)

If 2’ does not belong to T',, then

d
[ " routn - —loua =) 09
r{{—2)

If 2’ belongs to T';, but is not an endpoint, then
d}’ ’ r - ’
J ﬁ*i---;- = logjlz;, — 2') — log;(z; — 2} + i®(Z)
iyt (-7} (38)

By construction of the branch cuts, for any index m,
log,(z,, — ') and log,,..,(z,, — 2’} are analytic logarithms
in the variable z’ for 2" in C - [B,, v B,,... UB, ], and
so, as noted following equation (16},

IOgm(zm - Z’) = lOgm - 1(zm - Z’] + i2nkm (40]

for some integer k,, holds for z’ any point on I" which is
not one of the points {z,, z,, ..., z,}. Combine (37), (38),
(39), and (40), and collect terms of the form
(zm — 2 NoB,4(2,, — 2'), moting that the factors 2=k,
contribute to a constant term and a term in z'. Denote
the coefficients so obtained by ay,ay, a,,...,4a,, and
write

ijé@@
r

= g(z)N0(z)/2n] + a, + apz’

27 {—z
c-n=" an
+ Y afz; — ) logfz; — 2}
ji=1
Using the Sokhotski-Plemelj formula (22)
hl2) = §2) = ap + doZ
(42)

+ ¥ afz; - 2)logylz; — 2)
i=1
The function ¢(z) given by

@z) = ag + apz + Y afz; — z)log(z, — 2) (43)

i=1
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is analytic for z in the domain
G=C—[B,vB,,...uB,]

and is continuous on all of Q and T, even at the points
Zy5Za, .- -, Z, DECause (z; — z)logz; — z) tends to Zero as
z approaches z; from points of Q U T. Consequently the
function Re(@(z)) is harmonic in Q and continuous in
Qur

The CVBEM for approximately solving the Dirichlet
problem uses the function ¢{z), determining, in various
ways, the coefficients ag,ap, a,,...,a, in (43) so as o
approximate a given continuous boundary function g(z)
by the real part of ¢(z) for z on T. The same function
@(z) is also used in the approximate solution of mixed
boundary value problems.

Note that the derivation presented does not prove that
any continuous real-value boundary function g can be
approximated to any given degree of accuracy by the
real part of @(z), as in (43), for some choice of the
coefficients a,, ag, @;, - .., a,. This has been shown, for
the Dirichlet problem, in Ref. 8. Tt has not been proved
that the mixed boundary value probilem can be so solved
under general conditions, although many such specific
problems have been solved in practice; however, a
posteriori bounds on solutions to mixed problems can be
computed.®

4. Sommary

The expression

olz) = ag + apz + Z afz; - z) 108;(2; - z)

j=t

for the function ¢{z), on which the CVBEM can be based,
has been derived using the Sokhotski-Plemelj formulas
and the properties of the singular Cauchy integral. This
dertvation has shown how the branches logfz; — z) of
the logarithm should be chosen in any numerical
implementation of the CVBEM.
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