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ana.lysis process consist of the application of alternative drilling rules and the
consideration of sampling and mobilization costs when estimating expected
borehole costs.
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Estimating Uncertainty in Design Storm Rainfall-Runoff Models
Using a Stochastic Integral Equation

T.V. Hromadka II}

ABSTRACT

Almost all rainfall-runoff models in use today involve the
subdivision of the catchment into smaller areas, linked together
by a system of channel links. These "link-node" hydrologic
models represent the flow processes within the channel links by
a translation {moving in time) and an attenuation (reduction of
the maximum or peak flow rate} of the runoff {floodwater)
hydrograph. The runoff in each subarea is based upon the
available rainfall data, modified according to an assumed "loss
rate” due to soil-infiltration, ponding, evaporation, and other
effects. The net effect of all these approximations is a vast
spectrum of possible modeling structures. Using a stochastic
integral equation, we can mathematically approximate many of
these rainfall-runoff modeling structures with a generalized
model that is more tractable to detailed analysis of the model
structure. We can then proceed to evaluate rainfall-runoff
modeling uncertainty.

INTRODUCTION

Due to the nondeterministic nature of the rainfall-runoff
processes occurring over the catchment, the mathematical
descriptions of these processes result in stochastic equations.
Additionally, the so-called deterministic rainfall-runoff models
used to describe the several physical processes contain parameters
or coefficients which have well-defined physically-based
meanings, but whose exact values are unknown. The boundary
conditions of the problem itself are unknown (e.g., the temporal
and spatial distribution of rainfall over the catchment for the
storm event under study and also for all prior storm events) and
often exhibit considerable variations with respect to the assumed
boundary conditions, the measured rainfall at a single location
{e.g., Nash and Sutcliffe, 1970; Huff, 1970). Thus the physically-
based parameters and coefficients, and also the problem boundary
conditions, are not the assumed values used in rainfall-runoff
modeling applications, but are instead random variables and
stochastic processes whose variations about the assumed values
are governed by certain probability distributions.

IPrincipal, Boyle Engineering, 1501 Quail Street, Newport Beach,
CA 926589020



In this paper, the uncertainty problem is addressed by Providing a
methodology which can be incorporated into almost all rainfall-
runoff models. The methodology is based upon the standard
theory of stochastic integral equations which has been
successfully applied to several problems in the life sciences and
chemical engineering (e.g., Tsokos and Padgett, 1974, provide a
thorough development). The stochastic integral formulation jg
used to represent the total error between a record of measured
rainfall-runoff data and the model estimates, and provides an
answer to the questions: "based upon the historic rainfall-runoff
data record and the model's accuracy in estimating the measured
runoff, what is the distribution of probable values of the subject
criterion variable given a hypothetical rainfall event?”

STOCHASTIC INTEGRAL EQUATION
Rainfall-Runoff Mode!l Errors

Let M be a deterministic rainfall-runoff model which transforms
gauged rainfall data for some storm event, i, noted by Ppi(t), into
an estimate of runoff, Mi(), by

M: Pgi() — Mi(t) (1

where t is time. In our problem, rainfall data are obtained from a
single rain gauge. The operator M may include loss rate and flow
routing parameters, memory of prior storm event effects, and
other factors.

Let Pgi(t) be the rainfall measured from storm event i, and Qgi(t)
be the runoff measured at the stream gauge. Various error (or
uncertainty) terms are now defined such that for arbitrary storm
event i,

Qgi(t) = Mi(t) + Ei() + E4i(t) + Ei(t) (2)
where

Emi{t) is the modeling error due to inaccurate approxima-
. tions of the physical processes (spatially and
temporally);

Egl(t) is the error in data measurements of Pgi(t) and Qgi(t)
(which is assumed hereafter to be of negligible
significance in the analysis);

E,i{t) is the remaining "inexplainable” error, such as due to
the unknown wvariation of effective rainfall (i.e.,
rainfall less losses; rainfall excess) over the catchment,
among other factors.
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Let Ei(t) be redefined to equal the total error
Ei(t) = Emi(t) + Egi(0) + Efi(t) (3)

where Ei(t) is necessarily highly correlated to E/i(t) due to the
iven assumptions. Because ENi) depends on the model M used
in Eq. (1), then Egs. {2) and (3) are combined as

Qi) = Mit) + Emi(t) (@)

where Epi(t) is a conditional notation for Ei(f), given model type
M.

The several terms in Eq. (4) are each a realization of a stochastic
process. And for a future storm event D, the EyP(t) is not known
precise]y, but rather is an unknown realization of a stochastic
process distributed as [EmP(1)] where

[QMP(B) = MP() + [EMP(8)] (5)

In Eq. (5), [QMP(D] and [EMP(D] are the stochastic processes
associated to the catchment runoff and total modeling errors,
respectively, associated with model M, for hypothetical storm
event D. Hence in prediction, the model output of Eq. (5) is not a
single outcome, but instead is a stochastic distribution of
outcomes, distributed as [QMP(1)]. Should # be some functional
operator on the possible outcome {(e.g., detention basin volume;
peak flow rate; median flow velocity, etc.) of storm event I), then
the possible value of A for storm event D, noted as ApmPD, is a
random variable distributed as [AmT], where

fAMP] = A[QMP(1)] (6)

Developing Distributions for Model Estimates

The distribution for [EMP(t)} may be estimated by using the
available sampling of realizations of the various stochastic
processes;

{Emi(D) = {Qqi(®) - Mi(), i = 1,2, )

Assuming elements in {Emi(t)} to be dependent upon the
“severity” of Qgl(t), one may partition {Em'(t)) into classes of
storms such as mild, major, flood, or others, should ample
rainfall-runoff data be available to develop significant
distributions for the resulting subclasses. To simplify
development purposes, [EmMP()] will be based on the entire set
(EM'(t)} with the underlying assumption that all storms are of
"equivalent” error.



The second assumption involved is to assume each EpiQt) is
strongly correlated to some function of precipitation,
Fi(t) = F(Pp}(t)), where F is an operator which includes
parameters, memory of prior rainfall, and other factors.
Assuming that Epm'(ty) depends only on the values of Fi(t) for
time t< to, then Emi(l) is expressed as a causal linear filter {for
only mild conditions imposed on Fi(t)), given by the stochastic
integral equation (see Tsokos and Padgett, 1974)

1,
Elt,) = ] Fit,-s) hyi(s) ds &
s=0

where hp{t) is the transfer function between (Ep¥t), Fi(t)). Other
convenient candidates to be used in Eq. (8), instead of Fi(t), are
the storm rainfall, Pgl(t), and the model estimates itself, Mi(t).

Given a significant set of storm data, an underlying distribution
[hm(B)] of the {hyi(t)} may be identified, or the {hpi(t)] may be
used directly as in the case of having a discrete distribution of
equally-likely realizations. Using [hpm(t)] as notation for both
cases of distributions stated above, the predicted response from M
for future storm event D is estimated to be

[QMP)] = MPG) + [EmD(8) 16))
Combining Eqs. (8) and (9),
[

Q) = MP() + I FP(t-5) [hy(9)] ds (10)
s=0

and for the functional operation #, Eq. (6) is rewritten as

L

{AMD] = ATQMPW] = AMP (1) + [ FP(i-s) [hy(s)} ds) an
s=0

Confidence interval estimates for the chosen criterion variable
can now be obtained from the frequency-distribution, {AMP]. Itis
noted that [AMP) is necessarily a random variable distribution
that depends on the model structure, M.

DEVELOPMENT OF TOTAIL ERROR DISTRIBUTIONS
ranslation Unsteady Flow Routing Rainfall-Runoff Modet

The previous concepts are now utilized to directly develop the
total error distributions, [Em(t)], for a set of three idealized
catchment responses. Besides providing a set of applications,

278

additional notation and concepts are introduced, leading to the
introduction of storm classes.

Let F be a functional which operates on rainfall data, Pgi(t), to
produce the realization, Fi(t), for storm i by

F: Pgi{t)-Fi(t) (12

The catchment R is subdivided into m homogeneous subareas,
R = U Ry such that in each R;, the effective rainfall, ej(t), is
assumed given by

efi(t) = A1+ Xj!) Fi(1) (13)

where A; is a constant proportion factor; and where Xl is a sample
of a random variable, which is constant for storm event i. The
parameter A, is defined for subarea R;j and represents the relative
runoff response of R; in comparison to Fi(t), and is a constant for
all storms, whereas X! is a samples of the random variable
distributed as [X;jl, where the set of distributions, ([Xjl;

j=1,2,-,m} may be mutually dependent.
The subarea runoff is

t

t
q,-i(t)=f ej(t-5) 9j(s) ds = j A+ X Fit-s) ¢ (s) ds (14
k]

=0 5=0

At this stage of development, unsteady flow routing along
channel links is assumed to be pure translation. Thus, each
channel link, Ly, has the constant translation time, Ty. Hence for

m links,
9

Qi =j§ a1 (15)

where gji(t - 7)) is defined to be zero for negative arguments and
is the sum of link travel times.
For the above particular assumptions,
9 1 .
Qé(l) = Z] J A1 +Xii) Fi1-5) ¢j‘(s-‘tj) ds
= s=(]
(16)

o 9 .
- f By (3 4 04XD (1)) ds
s={ i=1
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In a final form, the runoff response for the given simplification
is

: o2 .
Qen) = f Fi(t-5) 3 & ¢;(s-t) ds
s=0 1

(17)

t
9 ,
+ ] F'(1-5) 2 ?Lj Xil ¢jl(s-1j) ds
3=0} j=1

In the above equations, the samples {Xj} are unknown to the
modeler for any storm event i. From Eq. (17}, the model
structure M, used in design practice is

t
. - 9 M
Miq) = [ Fi(t-s) 3. A 6(s-1)) ds (18)
$=0 j=1
Then, Qgi(t) = Mi(t) + Epit) where
L
Epi(t) = [ Fi(t-s) hyk(s) ds (19)
s=0

where hyi(s) follows directly from Egs. (17) and (18).

Should the subarea UH all be assumed fixed, (i.e., dii(h) = &i(t), for

all i), as is assumed in practice, then the above equations can be
further simplified as

1
Mi(t) = [ Fi{t-s) O(s) ds (20)

=0

9
where &(s) = ¥ A ¢j(s - 1j). Additionally, the distribution of the
.
stochastic process [hym(t)] is readily determined for this simple
example,

g
[hw(®)] = 3 [X;) A; 0i(t-1;) (1)

I

whc‘are [hm(D)] is directly equated to the 9 random variables,
{Xj,]=,1,2,---,9}. It is again noted that the random variables, Xj, may
be all mutually dependent.

In prediction, the estimated runoff hydrograph is the distribution

[QMP(®)] where [QuP1)] = MD(t) + [EpP(D], and M refers to the
model structure of Egs. (18) or (20).
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For this example problem, the stochastic integral formlulation is
t 1
FP(t-5) ®(s) ds + j FO(1-5) [hp(s)] ds (22)

[QMP(B] = [
5=0

s=0

where the error distribution, [EMD(1)], is assumed to be correlated
to the model input, FP(t), as provided in Egs. (19) and (21).

Multilinear unsteady flow routing and storm classes

The above equation is now extended to include the additional
assumption that the channel link travel times are strongly
correlated to some set of characteristic descriptions of the runoff
hydrograph being routed, such as some weighted mean flow rate
of the associated hydrograph. For example, the widely used
Convex Routing technique (Mockus, 1972} often utilized the 85-
percentile of all flows in excess of one-half of the peak flow rate
as a statistic used to estimate the routing parameters. But by the
previous development (i.e., definition of eji(t)), all runoff
hydrographs in the link-node channel system would be highly
correlated to an equivalent weighting of the model input, Fi(t).
Hence, storm classes, [§z], of "equivalent” Fi(t) realizations could

be defined where all elements of [E;] have the same characteristic
parameter set, ¢(Fi(1)), by

[E2] = (Fi) | 2(Fi(v) = 2} (23)

And for all Fi(t) e [£,], each respective channel link travel time is
identical, that is Tk = Ty, for all for all Fi(t) e [E;]. In the above
definition of storm class, z is a characteristics parameter set in
vector form.

This extension of the translation unsteady flow routing
algorithm to a multilinear formulation (involving a set of link
translation times) modifies the previous runoff equations (20)
and (21) to be,

t 9 R 1
Qi = [ Fi(ts) 2 4 ¢j(s-1?) ds =] Fi(t-5) @4(s) ds; Fi(1) € [§.]
5=0 =1 s=0 (24)

where ®u(s) = ¥, Ajbi(s-1;%), and
i

1
Epi(t) = I Fi(t-5) hw,i(s) ds; F(t) € [E] 25
=()
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The structure of the new set of equations motivates an obvious
extension of the definition of the subarea UH, the subarea A
proportion factor, and the subarea random variable distribution

[Xjl. to all be also defined on the storm class basis of [Ez]. Thus,
Eq. (24) is extended as

1
Mi@) = [ Fi(t-5) Z ?szd)jz(s-tjl) ds
s j

=0
(26)
1
= f Fi(t-s) @,(s) ds; F(1) € [£,]
5=0
The stochastic process [hy,{1)] is distributed as
[hv (0 = X XPI A% b7 (s - 12); Fict) e [E,) (27)
i
And in prediction,
[QMP(B] = MP(t) + [EMD(D); F() € [Ep] (28)
where
i
EmD()] = f FO(t-5) [hmés)] ds; FP(1) € [Ep) (29)
s=0

A_ Multilinear Rainfall-Runoff Model

Each subarea’s effective rainfall, eji(t), is now defined to be the
sum of proportions of Fi() translates by

¢;i(t) = g Ajk (T + Xgi) Fict - 00); Fi(D) € [£] (30)

where Xjki and Bjki are samples of the random variables
distributed as [Xjk] and (85, respectively. In the above equation
and all equations that fo[low, it is assumed that a storm class
system is defined, [£;], such that for Fi{t) ¢ [€z], all parameters
and probabilistic distributions are uniquely defined, and there is

no loss in understanding by omitting the additional notation
needed to indicate the storm class.
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The subarea runoff is
t

jS(t) = Z A']k 1+ Xjki) Fi(l - ejki - 8) ¢J(S) ds (31)
k
=0

or in a simpler form,

t
gii(t) = f Fi(t-s) 3, A (1 + X 0(s-0) ds (32)
s=0 k

It is assumed that the unsteady flow channel routing effects are
highly correlated to the magnitude of runoff in each channel
link, which is additionally correlated to the magnitude of the
model input realization, Fi(t). On a storm class basis, each
channel link is assumed to respond linearly in that (e.g., Doyle et
al, 1983)

O =2, ahit- o) (33)
4

where O1i(t) and Lj{t) are the outflow and inflow hydrographs

for link 1, and storm event i; and {a4 and {od are constants which
are defined on a storm class basis which is also used for the
model input, Fi{t). Thus, the channel link flow routing
algorithm is multilinear with routing parameters defined
according to the storm class, {£;] (see Becker and Kundezewicz,
1987, for an analogy based on multilinear approximation of
nonlinear routing).

Should the above outflow hydrograph, O1(t), now be routed
through another link {(number 2), then I»(t) = Oy(t) and from the
above

Oxt) = 3, a5 In(t - )
%=1
(3)

= a5 Y asht- o4 - o)

A=l 4=l

for L links, each with their respective stream gauge routing data,
the above linear routing techniques result in the outflow
hydrograph for link number L, OL(t), being given by
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ney

oL =3, ag 2, ar-l...

A=1 A=l
' (35)
Li¥] m
Z as Z as [){t - o - 0g - —ellg | - Oy )
A=l 4=]
Using an index notation, the above OL{f} is written as
OLt) = Y, acs It - 0ep) (36)
P73

For subarea Ry, the runoff hydrograph for storm i, gjit), flows
through L; links before arriving at the stream gauge and
contributing to the total modeled runoff hydrograph, Mi(t). Al
of the parameters ai s and wi s are constants on a storm class
basis. Consequently from the linearity of the routing technique,
the m-subarea link node model is given by the sum of the m,
g;l{t) contributions,

Mi@) ), D aly qit-alg) (37)
=1 <

Finally, the predicted runoff response for storm event D is the
stochastic integral formulation

t

Q7] = f FPs)( Y Y ake, 3 Ap1+1Xu]) ¢y(5-163]
. =0 =i < k

(38)
- ads)) ds; FP(0) e [Ep]

Given Fi(t) e [£;], all subarea runoff parameters {Ajk, $j(t)} and
distributions {[Xjk], [8jk]} are uniquely defined j = 1,2,-,m; and
all link routing parameters {as, 0/} are uniquely defined. Then

the entire link-node model is linear on a storm class basis and
once more Eqs. (26)-(29) apply without modification.

Our final model structure can be used to study the effect on the
runoff prediction (at the stream gauge) from arbitrary model M,
due to the randomness exhibited by the mutually dependent set
of random variables, {Xjk. Bjk}. Hence for any operator, 4, on the
predicted runoff response ol! Eq. (38), the outcome of # for design
storm event PgD(t) is the distribution [ApDP], where for all model
parameters defined,

[AMP] = A IMD(©) = (X, 8] (39)
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STOCHASTIC INTEGRAL EQUATIONS AND UNCERTAINTY
ESTIMATES

A stochastic integral equation that is equivalent to Eq. (38} is

[QuP()] = f FD(t-s) [n(s)) ds; FP(t) € 1Ep] (40)
s=0

where now [1(s)] is the distribution of the stochastic process
representing the random variations from the set of mutually
dependent random variables, {Xjk, 9ik], defined on a storm class
basis. (It is recalled that on a storm class basis, the hydraulic
parameters of a ai<bi and aid,i, and the $(s), do not vary.) In
prediction, the expected runoff estimate for storm events that are

elements of [Ep} is

t

E{QmD(D)] = f FP(t-s) E{n(s)] ds; F2(t) € [Ep} (41)

s=0

which is a multilinear version of the well-known unit
hydrograph method, which is perhaps the most widely used
rainfall-runoff modeling approach in use today.

Then the model M structure of Eq. (38), when unbiased, is given
from Eq. (39, by

MP(D) = E{QMP(1)] (42)

The total error distribution (for the subject model M) can be
developed by

[EpD(D} = [QMP®) - EIQMP()] (43)

where all equations are defined on the storm class basis used in
the previous equations. Given sufficient rainfall-runoff data, the
total error distributions can be approximately developed by use of
Eq. (43). Should another rainfall-runoff model structure be used,
then E[QmP(t)] is replaced by the alternative model, and another
set of realizations of [EMDP(t)] is obtained from (43). Equation (43)
is important in that given a specified model, the total error in
mode] estimation is approximately given by a stochastic process.
And similar to any sampling process, the modeling total error
distribution becomes better defined as the sampling population
increases. Through the equivalence between Egs. (38) and (40),
the uncertainty of the rainfall-runoff model of Eq. (38) can be
evaluated by use of Eq. (40). That is, due to the limited data
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available, one cannot evaluate the total model error, as
developable from Eq. (43).

The various stochastic distributions utilized are estimated from
regional rainfall-runoff data and the chosen model structure.
Because runoff data are available for the precise catchment point
under study (i.e., we have a stream gauge), the various
distributions involved can be rescaled to correspond to the
selected study point. However, in order to utilize these
distributions at ungauged points in the catchment, or at other
catchments where there are no runoff data, a method of
transferring these distributions is needed. That is, a method is
needed for estimating the expected values for discharge (or other
description variables used) for the point under study. Given
these estimates, the various distributions can be rescaled, and a

distribution [n(s)] can be estimated from the rainfall-runoff data
pool.
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FLOOD FREQUENCY ANALYSIS WITH DISTRIBUTIONS
OF FRACTIONAL ORDER STATISTICS

S. Rocky Durrans!

ABSTRACT

pistributions of fractional order statistics (FOS)
have been recently introduced as plausible models for
flood frequency analysis. These distributions should
be of interest to hydrologists for a number of
reasons, but can be difficult to fit to observed data
sequences. This paper presents an overview of the
class of FOS distributions and describes some of the
difficulties encountered when dealing with the problem
of parameter estimation.

INTRODUCTION

Within the class of parametric statistical methods for
estimation of extreme flood magnitudes, it is possible
to differentiate between two schools of thought. The
first school holds to the class of exponential distri-
butiong, of which the Lognormal and Log Pearson Type
3 are nmembers. This school is exemplified by the
recommendations of the U.S. Water Resources Council
(WRC, 1981), now the Interagency Advisory Committee on
Water Data (IACWD). The second school, which is exem-—
plified by the recommendations of the U.K. Natural
Environment Research Council (NERC, 1975), maintains
that the class of extremal distributions should be
applied. Because the flood analysis problem deals
with extremes that have cccurred within each calendar
or water year, followers of this second school seem to
be gaining a significant degree of momentum. The fact
that extreme value distributions are often fairly easy
to work with has, without doubt, also contributed to
this effect.

Of course, there are many other distributions that
have been suggested as well for flood frequency
analysis. Among these are the Wakeby (Houghton, 1978)
and Two-Component Extreme Value (TCEV) (Rossi et al.,
1984) distributions, though the latter may be consi-
dered to fall in the extreme value class. However,
despite any arguments that one may advance to theore-
tically justify the use of a particular distribution,
in practice cne is forced to make a choice between
them. It is generally believed that no distribution
is universally applicable, and hence that selection of
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