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Abstract

Hromadka II, T.V. and R.J. Whitley, Expanding the CVBEM approximation in a series, Applied Numerical
Mathematics 11 (1993) 509-516.

In the past, the CVBEM (complex variable boundary element method) has been approached as a collocation
problem or by least squares. In this work, the CVBEM analog is redeveloped as a series expansion of nodal
point functions with unknown nodal point values as the coefficients. This series expansion provides further
insight into the theoretical and approximation aspects of the CVBEM. Applications demonstrate the utility of
the CVBEM as a computational approach to solving two-dimensional potential problems involving Laplace
and Poisson equations.

Kevwords. CVBEM; series expansion; boundary elements; complex variables;, complex variable boundary
element method.

1. Introduction

The complex variable boundary element method [3), or CVBEM, has gained increased use in
approximating two-dimensional potential problems since its inception nearly ten years ago [2].
The CVBEM has been extended to include collocation technigues, least-squares minimization,
and use of singular approximation functions. The CVBEM numerical analog is reformulated
into an expansion of nodal point approximation functions such that several techniques de-
scribed previously can be unified. With this formulation, the CVBEM is now described as a
series expansion, developed from the Cauchy integral. Applications to potential flow problems
demonstrate the utility of this numerical technique.
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2. Formulation

The CVBEM is developed from numerically approximating the Cauchy contour integral [3]

1 w(l)d
o(2)= 5= = . (1)
where [ is a simple closed contour enclosing a simply connected domain §2; «(z) is an analytic
function on 20U T { is an integration variable; i =v —~ 1. It is assumed in (1)} that I' is a
polygon with v vertices, and values of w({) are given on I' such as to provide a well-defined
mixed boundary value potential problem.
Contour I' is discretized into m boundary elements, I}, by m nodal points such that m > v,
and a node is located at each vertex of I" [3]. A piecewise linear spline function N, (L) s defmed
for each node j (located at coordinate z, €l by

0, Jelurl_ |,
Ni(¢)y= (g"'z')/(zj“zj—l)a {ell_, (2)
( iv1 )/(z; 1= 2), (€T,

where z, ,, =z, appropriately.
A global trial function, based upon the sum of nodal contributions, is

- LN, ®)

where G({) is a continuous piecewise linear function on I; w; are nodal point vaiues of a
potential function ¢(z -) and its conjugate :p(z ), where w;=d; + ;. Generally, nodal points
are located on I" such that the given boundary condmons are matched on I' by the giobal trial
function in (3). Higher-order spline functions may be used in (3), or an increase in nodal point
density, in order to obtain a match of the known values of w(z}on I

The CVBEM approximator, for linear trial functions (higher-order polynomial splines may
be used directly in this development) is

1 d
w(z)= fr ()g e, (4)

L—Z

where

alz)isa nalytic in £ and continuous on [". Note that &(z) = é(z) + u,b(z) Vidlz) =
and V2(z) =

3. Series expansion of the CYBEM analog

The formulation of (4) is expanded by substituting (3) into (4) by
1 = “’ij(g }d{

@(z);ﬁfrjg [ (5)
mo] wN({) dg“
=J.§12_-Tl'-i-'/;‘:_luj; g —z (6)

where in (6), I, =1, appropriately.
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Rewriting (6),

X 1 m N({) d{
w(z)—mgw,fn_le—g_z . (7)
Integrating (7), the series expansion is developed by
~ = 1 z _z'l
w(z)ngleZ'rri 2, -z, (ln(zj"z)—ln(zj_]—z))
z, -z
+{——(in(z,,, — z) ~In(z, ~ z)) (8)
-1 T
= Y wH(z). (9)
i=1
where in (9). H{z) follows immediately from (8).
In evaluating
/ d{=1In(z,,,—z)—In(z; - z), (10)
-z

a branch of the logarithm is chosen so that In{{ — z) is an analytic function of { on I and all z
in £2, resulting in a right-hand side in (10) which is analytic in z for z in £2. Note that in (8) and
(9), the limit of @(z), as point z € £2 approaches any nodal coordinate z;, € I', is well defined;
this limiting value leads to the collocation techniques used in the CVBEM [3].

For anv nodal value w;, let k(w,;) be the given known value. Then k(wj) is generally either
the real number ¢(z;) or the pure imaginary number i2(z}, but can also be ¢(z,) +idlz) if
the values of both ¢(z,) and #(z,) are known; in the case that neither ¢(z;) nor v(z,) is
known. k(w,) = 0. Similarly u(z,} is the unknown value so that

ktw) +u(w;) =d(z,} +id(z)). (11)
From (10}
o(z) =f"(z) +f“(2), (12)
where f*(z)is the known function of z,
Fi(z) = Lk{w;) H{z), (13)
and
f4Z)=Yulw;)Hz) (14)

is a function of the unknown nodal value estimates and the complex variable z € £2. Equations
(10)-(14) present a new series expansion for the CVBEM.
The CVBEM formulation can now be written as a minimization of a norm

1£4(2) = (@(z) = F () (15)

on the problem boundary, I', with respect to the given boundary condition values. With a



512 T.V. Hromadka I, RJ. Whitley / The CVBEM approximation

match of the boundary conditions, given on [, by the sclected spline functions and k(mf)
values, there is no approximation error associated with the complex function f*(z).

Thus, the CVBEM approximation analog is to minimize the error in fitting, in a least-squares
sense {or other norm), the difference in boundary values of f*(z) and (w(z}—f*(z)) on T,
where boundary condition values are given.

Stream Function Contour

ro

>
X
3 x103 Potential
&
5]
=
=)
: -'
=
10 15 20 25
Node Number
4 x1073 Stream Functon
sd}
;
b2
£
2
0 3 10 15 20 25

Node Number

Fig. 1.



T.V. Hromadka II, R.J. Whitley ;/ The CVBEM approximation 313

4. Application

Two problems, where analytic solutions are readily available, are considered herein to
demonstrate the CVBEM accuracy improvement with respect to nodal point placement. Two
cases are considered; namely 25-node and 40-node placements on the problem boundary. The
problem solution is w(z)=In(z + 1)/In(z — 1) in the upper half-plane, bounded by x= -2,
x =2, and y = 2, with square insets about the logarithm singularities at x = —1 and x =1 as
shown in the figures.
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Stream Function Contour
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In the CVBEM application, boundary conditions of the potential (¢) are given everywhere
on the boundary, except along the two square insets (see figures) where stream function (i)
values are given. Node placement is shown in the figures, with counterclockwise numbering,
beginning with number 1 at the lower left-hand corner. Because the CVBEM develops a
continuous solution throughout 2 U ', a maximal error and also a root mean square error is
computed along each boundary element and plotted for both the stream function and potential
functions. Figure 1 shows the nodal placement and computed stream function contours for a
25-node CVBEM model, and includes the root mean square integral error for both the stream
function and potential functions, respectively. Figure 2 considers the 40-node case study. For
further comparison, Fig. 3 examines a maximal error for both the stream and potential
functions, and also compares computed stream function contours to the solution contours.
Similar to Fig. 3, Fig. 4 compares the 40-node model stream function contours to the solution
contours.

5. Conclusions

The CVBEM analog is redeveloped into a series expansion of nodal point functions. From
the series expansion, the well-known collocation and least-squares formulations, currently in
use, can be seen to be applications of different norms in minimizing a fitting of the CVBEM
approximation function, f*(z), to the boundary conditions of the problem. Applications
provided demonstrate the utility of the CVBEM in approximating mixed boundary value
problems.
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