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Abstract

The CVBEM is a numerical approach to solving boundary value probiems
of two-dimensional Laplace and Poisson equations. The CVBEM estimator
exactly solves the governing partial differential equations in the problem
domain, but only approximately satisfies the problem boundary conditions.
In this paper, a new CYBEM error measure is used in aiding in the develop-
ment of improved CVBEM approximators. The new approach utilizes Tayler
series theory, and can be readily programmed into computer software form.
Based on numerous test applications, it appears that use of this new CVBEM
error measure leads to the development of significantly improved CVBEM
approximation functions.

1.  INTRODUCTION

1.1. Definition of Working Space, ¥

Let O be a simply connected convex domain with a simple closed piece-
wise linear boundary T with centroid located at 0+0i. Then in this paper,
wEW, has the property that wl(z) is analytic over QUr.

1.2. Definition of the Function |Jw]]
For w&H, the symbol Hwll is notation for

172
ljwll = [J (Rem)z du+J (lmm)z du]
To Ty

where T  and T, are both a finite number of subsets of T that intersect only
at a finite number of points in T.

The symbol IIme for w€W, is notation for

1/p
lall, = [] o)1 du] pzl

T
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Of importance is the case of p = 2:

172
Hutly = [ | [ewt® s timar?] du:l

iy

1.3. Aimost Everywhere {ae} Fquality

A property which applies everywhere on 2 set £ except for a subset
E' in E such that the Lebesque measure m{E') = O ig said to apply almost-
everywhere {ae). Because sets of mezsSure rero have ng effect on inteqra-
tien, almost-everywhere {ae) equality on T indicates the same class of
elenent. Thus for w€wp, [wl = {u€Wyiu(z) are eaual ae for zer}. For

example, {0] = {w€W :u(z}= O ae, T&€r}. When understood, the notation
‘11" will ba dropped.

2. MATHEMATICAL DEVELOPMENT
2.1. Introduction

The WP spaces (or Hardy spaces} are well documented in the literature {e.q,
Duren, 1970). Of special interest are the EP(q) soaces of complex valued
functions. If meﬁzm), then w satisfies the conditions of Definitien 1.3
on #os where !Iw(éc)llz is bounded as §+1. Fimally, if mea'z(a) then the
Cauchy integral representation of wl(z) for z&Q applies. It is seen that
wnCEz{n),

2.2. Theorem (boundary integral representation}
Let w & and 7€02. Then

@) 1 J wlz) dn
z L Jr—
¢ 2w -2 ()

T
Proof

For wEW,, then wEE?‘(S}} and the result follows immediateiy.
2.3. Mimost everywhere (ae} equivalence

For we Fln, functions XER«'Q which are equal %0 w ae on T represent an
equivalence class of functions which may be noted as [w]. Therefore,
functions x and ¥ in W are in the same sauivalence clags when

[ ixytawso
T

For simplicity, wek, is understood to indicate [w]. This follows directly
from the fact that integrals over sets of measure zero have na effect on
the integral value.
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7.4, Theorem {uniqueness of zero element in wn)

Let wEW,, and ¢ = 0 ae on 1"¢ and § = 0 ae on I‘\p. Then (w,w)=0=>ws= [0].

let w€ Wﬁl’

green's theprem states, let F and G be continunus and kave coptinuous
first and second partial derivatives in a simply-connected region R bounded
by a simple closed curve €. Then

%6 26 %6 %) [3F a6 wF a6
fl— du - -—dy=-§fF + F—— % — - dx dy
i 3y ox R 5:2 ;-;2— 9K X Iy Iy
et £ =@, 6= 4. Then

2
1£¢Z—:~d1‘ = J¢92¢dn+ JEHZ_] +{%]2]d9

2

But Vztp = ¢ in Q. Thus

a¢
[¢--— dl‘=J[¢i+¢2] di
L on ¥

Q
. 1Y 3%
But (m,mi=01mp1es¢=ﬂonr¢and\b =0 on T (hence —=0=>—= 0},
v 3s 3n
angd
- 2 2
j¢¢“d1‘+[¢¢“dl‘-u¢x+¢y]dn
F¢ Fq) Q
S
0 0

Thus {wow) = 0 => ¢, =0 = ¢, on Q.
Thus $(x,y} is a constant in 2. But

Tim 6= 03=>¢=0. Similarly, v =0. Thus, = fol.
I*CE%

2.5, Theorem (WQ is vector sbace}
ey it a linear vector snace over the field of real mumbers.

Froof

This follows directly from the character of analytic fuactions.
The sum of analytic functions is analytiec, and scalar multipiication of
analytic functions is analytic. The zero element has already been noted
by [0} in Thearem 2.4.

2.6, Theorem {definttion of the inner-product]
Let X, ¥. z,EWQ. Dafine a real-valued functian (x,y} by

(x.¥) = ; Rex Reydu + j Imx Imy dy

]"Q i'\p
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Then (,} is an inner-product aver W..

Proof

It is obvious that {x,¥) = {¥.x); {ke.y) = kix,y} for k real;
(x+y.z} = (x.2) + (y,2)s and (x,x} = |[x{[ 2 0. By theorem 2.4, (k%) = 0
impiies Rex = 0 ae on T, and Imx = 0 ae on I“b and x = [O]EWQ.

Three theorems follow inmediately from the above, and hence no proof
is given.

2.7. Theorem (WQ is an inner-product space}

For the defined inner-product, WQ is an inner-product space over the
field of real numbers.

3. THE CVBEM AND W,
3.1. Definition

Let the number of angle points of I' be noted as A. By a nodal
partition of T, nodes {Pj} with coordinates {z.} are defined on T such
that @ node is jocated at each vertex of T and the remaining nodes are
distributed on T. WNodes are numbered sequentially in a counterclockwise
direction along T. The scale of the partition is indicated by 1 where
1= maxfzj+1 - zji. Note that no two nodal points have the same coordinates
in T.
3.2. Definition

A boundary element I', is the line segment joining nodes z. and zj+1;

J
£y = {20 z=z{1) = zj(1=t} + zj+1t, Ust<l). (Note for m nodes on I', that
z

& 21.)

3.3. Discretization of T into CVBE
Let a nodal partition be defined on T. Then

m
T = L.
191 J

where m s the number of compiex variable boundary elements {CVBE).
3.4. Definition

A Tinear basis function Hj(;) is defined for €T by
(C = Zj-l)/(zj = Zj_l}r Cer-_

J-1
Nj(C) = (Zj*'l—':)/(zj*‘l-zj)‘,: CEI’j

The values aof N&(c) is found to be real and bounded as indicated by the
next theorem.
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3.5. Theorem

Let Nj(z;) be defined for node PJ.EI‘. Then Oglvj(c)sl.

3.6. Definition

tet a nodal partition of m nodes {Pj} be defined on T withm 2 A

and with scale 7. At each node P., define nodal values ‘:’j =$j + ixj-;j where

%, and 1113- are real numbers. A global trial function Gm(c) is defined on T
for €T by

m
G = . s
NGRS
J
31.7. Theorem

From 3.6, Gm(c} is the sum of integrable continuous functions, and
nence

{i) 6 (2) is continuous on r.
{3i1) For‘ m(C)EW . us{r,)EL

4. TAYLOR SERIES EXPANSIONS ON CVBE
4.1. Comstruction

Lat wew Then w is analytic on an open domain QA such that nUT
is entirely conta1ned in the intericr of Q Let T* be in QA such that
T* is a finite length simple closed contour that is exterior of QUIT.
Then w is analytic on T* and, by the maximum modulus theorem,

lwlz)| < M, for z€T*, for some positive constant M. (2}

Aiso,
jwlz)] ¢ M, for zeQUT (3)

Define a nodal partition of m nodes on T. Complex Variable Boundary Elements
{(CYBE) are defined to be the straignt line segments T, = [z, Z; 1 where,
for m nodes, z,,, = z;. At tle midpoint Z, = % (z,+2;3) of each T,
expand w(z) into a Taylor series Tj(z -zj). Each Tj(z- Z.) has a nonzero
radius of convergence R., and TJ.(z - Ej) = w(z) in the interior of circle

= {z:lz—iJ] = R }. The C all minimally have radii R
where R = min ',cl 2;2\ such that L €T and G, €T*. Discretize T intom
CVBE, Fse j=1,2,*".m such that the length of Ty, ||r [l < —L—where

J |dz| and ZL and the other conditions regarding placement of
r
nodes at angle points of T' are satisfied.

4.2. Taylor Series Expanswn
£ (4)
For c&Ty, Tyle- z) = Py (c) (c)
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where N = polynomial degree, and from Cauchy's theorem,

= i+l
1 L~z (z}dz
e - J[—fl} i (5)
21r1c. z-zJ. zZ-1
J

The magnitude of lE?(c)l is, for every j,

= N4D
L-2. maxjw(z) | 2R
IE'? S . 2€C,, tET (6)
J 2n | z-3, min|z -z} J
L -z N+1 L/m TNH
But ~ < —
Z - Zj R
thas 1™ e L
S i =M —
d 2n | mR R/2 mR

which is a result independent of J. Note that as the part1t1on of T
into CVBE becomes finer, i.e. max||I‘ {|+0, then m-+e and jE (z)|+0.
Also, as the order of the Taylor senes polynomial increases, N-w, and
recalling that (L/m} < R/Z, then |E {z)]~0.

4.3. CVBEM Error Analysis
From Cauchy's theorem, for zeqn:

o(2) = _1_ J w(z)dg ()
2ni r t-z
On T, let
m
wlc) = j£1 X, Tile), cer {9)

where IJ. is the j-element characteristic function (i.e., . =1 for

J
CET;i 0. otherwise). Then for zeq,
T )
X. T.(c)dg
_ l j=1 J J
w(z) = —
2mi T -z
mo1 T.(¢)dg
- ___J Tilerde {10)
=1 2mi p.ot-z
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For Ty(c) = Ple} + E}(e),

H N
1 m ¢ Pg)de 1 m (E/(g)dg
wlz) = — 7} I‘J_*‘”_ J'_J_‘_

2mi j=t c-z Zmi j=1
T. :
J I‘J

L=-2Z

~

= Gy(2) + £y(2) (1

The &N(z) is the CVBEM approximation based on order N polynomials,
where it is understood m nodes are used. The error, EN(z) is evaluated
in magnitude for z€Q and using Eq. (12) to be:

1 |m EN(z)
IEN(Z)I ) ; jzl IJ- __i__z_g
J

1 (m)(max||rj||)(max|5§(c)|)

[FaN

2n minig - z|
. [EIA) [
0 :
am [ LWL _ ;
= e [ﬁ] (12) . i-

where D = miniz - z{, for f&r.
Recalling that [;';(-] < R/2,

iEN(z)| + 0 as either m>o, or Now .
Thus, as the number m of CVBE increases, or the order of the interpoliatng

polynomial N increases, error |EN(z)|+G.

4.4, CVBEM Numerical Anaiog
As z+cer‘j, for zeq, then w{z}-+w(g) = Tj(t;).
The CVBEM procedure is to set in a Cauchy limit sense,

1 m T.(z) de
T.{z} = — J’ L, as z-T while z€Q. {13)
3 2mi §5l g L-z :

;

For order N Tayior series expansions, the CVBEM sets in the Cauchy Timit

N
I m Pic)dz
Pb-[(Z) =— 7 J«J—— , as z—T while z€4, {14}
J mi Je . ¢~z
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If collocation is used, the numerical approach is to set {e.g., Hromadka
and Lai, 1987):

Pg(zi) = w{z;}, for each nodal coordinate Z;€T,. (15)

If a least-squares approach is used, the numerical approach is to
minimize {(e.g., Hromadka and Whitley, 1989}

IP(e) - w(e)l], zer, §=1,2,++.m {16)
Letting

m -
(e = L (0 &y

where it is recalled &j = m(zj),
Tim G(z} = w{c)
i+0

and

1 G(z) dg
w(c) = Yim — J

» ZEQ, (17}
140 27i

t-z

where 1 is the scale of the nodal partition of T.

5.  IMPLEMENTATION

In general, one does not have both ¢ and ¢ values defined on T, but
instead have ¢-values defined only on a portion of T', specified as P¢, and
¢ is defined only on the remaining portion of T, T¢ where P¢LJP¢ =T,

That is, we have a mixed boundary value problem.

The numerical formulation given in the above equations solves for the
unknown {¢-values on r¢, and the unknown ¢:va1uei on r¢. Once the unknown
¢ and ¢ values are estimated, denoted as ¢ and ¢, then the global trial
functions are well defined and can be used in w(z) estimates for the
interior of Q. The possible variations in such boundary condition issues
are addressed in Hromadka and Lai (1987).

In this paper, we focus upon the Taylor series expansions in each Fj,
as the interpolation polynomial order, N, increases and also as the number
of CVBE, m, increases.

Thus, the numerical approach used in the CVBEM computer program
formulation is outlined by the following steps:

(1) Discretize the problem boundary I' (which is a finite union of straight
line segments) into m CVBE by use of nodal points distributed on T
where minimally a node is placed at each corner of T'; i.e. m 2 AL

{2} For N=1, a linear interpolating polynomial is defined on each Fj-

For N>1, a higher order polynomial expansion is used and, consequently,
additional interpolation nodes are defined in each Fj‘ For example, for
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N=2 a midpoint node is added to each rj; for N=3, two additional nodes
are defined in the interior of each T..

3y Given N, a matrix solution provides the coefficients needed to define
interpolating polynomials for each CVYBE, using splines.

14} The unknown nodal values are estimated by means of collocation or
least-sguares error minimization.

{5) Using the estimates for the unknown nodal values, a CVBEM approximation
w(z) is well-defined for estimating w(z) values in the interior of Q.

{(6) CVBEM error is evaluated by comparing w(z) and w(z) with respect to the
known boundary values of w{z) on T; that is, compare § to ¢ on I,, and
compare ¥ to y on T,. (From the previous mathematical development, if
$=¢on Té) and § = ¢ on I"b, then &(z) = w(z) for all zeq, if mEWQ.)

{7) After i and w are compared as to boundary condition values, then the
CVBEM program user can decrease the partition scale {i.e., increase the
number of nodes uniformly} and/or increase the CYBE interpolating polynomial
order, N. The medeling goal is to increase {m,N) until the boundary
conditions are well-approximated by the CVBEM &{z).

It is recalled that reqgardless the goodness of fit of &{z) to the
problem boundary conditions, the components of w(z), i.e., the functions
3{z) and §{z) (where o(z) = §(z) + iv{z)) bath exactly satisfy the
Laplacian ¥4 = 0 and V2$ = 0 for all z€q. Thus, there is no ervor
in satisfying the Laplacian equation in . This feature afforded by
the CVBEM is not achieved by use of the usual finite element or finite
difference numerical techniques which have errors in satisfying the
problem's boundary conditions as well as errors in satisfying the flow
field Laplacian in g.

{8) A new approach to evaluating CVBEM approximation error is to examine the
closeness between values of the interpolating polynomial in each CVBE,
and the CVBEM %(z) function, for z in Fj. That is examine in a Cauchy

Timit 1|P§(c)-&(c)|l2. L€T., for all CVBE Ty As |]P?(c) - a(g)nz*o
{i.e., by increasing m and Ni for all j and alil cEIH, then necessarily
o{z)nw(z) for all z€Q, if m(z)ewn.

{3) The choices as to increasing m or N is made by increasing both m and N
in those boundary elements that have the most approximation error of
IEP?(c) - afg}|| for cEI&. In this way, &{z) approximations improve
in accuracy without excessive additional computation. Generally,
three or four attempts in developing G{z) functions may be needed for
difficuit potential flow problems, each successive CVBEM approximator
being based upon the prior attempt but with localized increases inm
and N where approximation error was largest.
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6.  APPLICATION

2
Solve %—§-+
X

Stream function values are specified along the horizontal 1ines of I, angd
potential function values are specified along the horizontal lines of T,
forming a mixed boundary value problem. The analytic solution used is
w{z} = In [(2#41}/(2-1]. Figures 1, 2, and 3 show approximation results
versus exact values for 12, 25 and 40-boundary nodes, respectively. The
accompanying figures show magnitude and integrated root-mean-square error
plots along T, for the boundary values.

Application B

Figure 4 solves the Laplace equation for ideal fluid flow over a
cylinder on the shown domain, 2. The CVBEM vs. amalytic results are
compared in Figs. 4, 5, and 6 for 12, 25, and 40 node placements,
respectively. Also shown are corresponding error plots in meeting boundary
condition values along I'. The exact solution is w(z) = z+1/z. Stream
function values are specified along the arc and also on x = 0; otherwise,
potentiat function values are specified along T.

a2 .
;;%-= 0 in Q where Q is the domain shown in Fig. 1.

7.  CONCLUSIONS

The CVBEM is a numerical approach to solving boundary value problems
of two-dimensional Laplace and Poisson equations. The CVBEM estimator
exactly solves the governing partial differential equations in the problem
domain, but only approximately satisfies the problem boundary conditions,
The CVBEM approximator can be improved by developing a better fit to the
problem boundary conditions. In this paper, a new CVBEM error measure is
used in aiding in the development of improved CVBEM approximators. The new
approach utilizes Taylor series theory, and can be readily programmed into
computer software form. Based on numerous test applications, it appears that
use of this new CVBEM error measure leads to the development of significantly
improved CVYBEM approximation functions.
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Figure 2. Application A with 25 nodes.
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