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Chapter 3

A Review of Groundwater Contaminant
Transport Modeling Techniques

T.V. Hromadka II
Williamson and Schmid, Irvine, CA 92714 and Department of
Mathematics, University of California, Fullerton, CA 92634, U.S.A.

Abstract

The current technology of computer modeling groundwater contaminant fransport in-
volves widespread use of domain-discretized methods such as finite element and finite
differences. Nodal Domain Integration or Control Volume methods are also used fre-
quently due to the continuity of mass transport relationships. In this chapter, some of
the dominant underpinnings of these domain-discretized techniques are reviewed, and
a uniformity between modeling techniques is presented. Because a principal variation
between the numerical techniques is the capacitance matrix, the focal point in the
comparison will address this term in the numerical analog.

3.1 Introduction

This chapter introduces the reader to numerical modeling techniques that can be
applied to the hydraulic analysis of groundwater flow and, by extension, groundwa-
ter contaminant transport. Numerical modeling techniques applied to mathematical
models of groundwater flow imply the use of modern digital computers, which are
now widely used for many engineering and scientific applications. Improvement in
numerical techniques and computers now make it possible to solve rather complicated
porous media flow problems on miniclass or even microclass computers.

- Numerical models of regional groundwater flow have been widely used for a num-
ber of years to aid in aquifer management. Reviews of the basis and the use of such
models can be found in Freeze and Cherry(4], Remson et al.[12], Pinder and Gray[11],
and Bear[1]. Usually these models are two-dimensional models of the zone of satura-
tion where the coordinates are oriented in the horizontal plane. The vertical direction
is regarded as an integrated average where vertical velocity components are assumed
to zero. Both the finite-element and finite-difference approaches are used as numer-
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ical analogs of the governing two-dimensional, dynamic equation of state. In several
special cases, three-dimensional models have been advanced, and models that include
the unsaturated zone have been developed. Contaminant transport submodels are
overlayed upon the groundwater flow modeling results, using flow velocity estimates
and estimate of soil water saturation.

Obtaining and applying a model that is already developed is sometimes diffcult
for several reasons. The difficulty most offen encountered is that after a model is
developed, verified, and applied there are inadequate resources for maintaining the
model and servicing it. All modern software that is widely used requires a central
enterprise for maintaining the software, usuaily the vendor. Second, numerical ground-
water models, although elegantly constructed to solve the problem they are designed
for, are oftentimes not truly user-oriented. Finally, another troublesome problem that
may arise in adapting a model to a new environment is that sometimes models may
be machine dependent. It is sometimes an unsurmountable task to adapt a model to
a different computer from the one it was developed on. As a consequence, it may be
more practical in some cases to start from scratch and build a new numerical model.

Notwithstanding these problems, numerical modeling, when combined with ap-
propriate geotechnical exploration and hydrologic analyses, is a powerful tool. The
use of existing numerical models or the development of a new model require some un-
derstanding of not only the physical and chemical processes involved in comtaminant
transport and groundwater movement but also of the basic mathematical principles
needed to develop a numerical analog. This chapter is designed to, in part, meet this
need. Only a very limited treatment of numerical techniques is given here; the reader
should consult the several referenced texts for additional information [1,2,4,11,12].

3.2 The Mathematical Problem

Both saturated and unsaturated flow processes must be evaluated to realistically
model the hydraulic behavior of groundwater flow and contaminant transport. Simi-
larly, introduction of contaminants into unconfined aquifers should include an analy-
sis of unsaturated flow phenomena. Because this chapter focuses upon the numerical
modeling aspects, the groundwater flow component is examined for simplicity.
Consider the most complicated case first. To make the mathematical statement as
simply as possible, we will assume a homogeneous nondeformable porous medium but
will allow hydraulic conductivity to vary directionally (i.e., an anisotropic medium).
We will not include a consideration of air flow; we will deal only with water flow. Con-
tinuity for a differential control volume may be expressed in Cartesian coordinates as

v, Ov, v 06

s (1)
Ox Oy 0Oz at
where x, y and z are Cartesian coordinates; t is time; v, vy, and v, are velocity fluxes
in their respective directions; and ¢ is the volumetric moisture content. For simplicity,
fluid sources and sinks are not included. Darcy’s law is

Qﬁé
dx

Vx — _Kx
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a
Vy = —KY aji 7 . (2)
v, = —K, ?;b

where Kx,Ky, and K, are the principal direction hydraulic conduct1v1ty coefficients
and ¢ is the total hydraulic head where

$=tp+h ®
where 1 is the pore water head and b is the elevation head. If z is oriented vertically
upward, (h = z). Equations (2) and (3) only apply to porous media flow where inertial

forces are negligible (i.e., a Reynolds’ number less than 3). Substituting, Equation
{2) into Equation (1) yields

5(Kx%f) a(Kya,,) K3 _ a6 @
ax Oy Bz ot )

To solve Equation (4), there must be a known relationship between 8 and 1. We
have two options: we can replace g% with

a0 Bqﬁ

7" B )
or replace ¢ on the left side with a function of 8, yielding the diffusion form of the
equation. From a numerical standpoint it is usually better to modify the right-hand
side of Equation (4), and leave Equation (4) with total head as the state variable.
Equation (5) may exist, provided there is unique single-valued function 8, which is

given by
af
0 , v=20

The condition (1) < 0) represents unsaturated flow, and the condition (¥ > 0)
represents saturated flow. For unsaturated flow, we must know the functional form
(8 = 8(z))), the so-called soil moisture characteristics that must-be determined in the
laboratory using soil samples or must be inferred from data, such as that published
by Guymon et al.[6]. :

Furthermore, when (3 < 0), the hydraulxc conductivity is a function of water
content or pore water pressure; i.e., (K = K(#)) and this function must be determined
by laboratory analysis of soil samples or inferred[5]. For unsaturated flow, Equation
(4) is nonlinear since the hydraulic conductivity coefficients are functions of pore
pressure head. As long as the temporal term exists, Equation {4) is a parabolic
equation.

To solve Equation (4}, we must have boundary and initial conditions. Generally,
these are of the form
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Boundary Conditions ¢ = ¢(s) >0
% = qu(s)/Ka ,t>0 (7)

Initial Conditions = ¢o(x,y) ,60>0

where s is a coordinate tangential to the solution domain surface, n is a normal
coordinate to this surface, and q,(s) is a flux condition that may be negative, zero, or
~ positive. The first boundary condition represents a specified hydraulic head along the
boundary. Since it is permissible for this boundary condition to vary with distance
along the boundary, it may be a function of distance, 8. Also, the boundary condition
may vary in time in a step function manner. The second boundary condition deals
with a flux condition normal to the boundary surface. Oftentimes the hydrologist
tries to locate a boundary so that the flux is zero. If, unfortunately, a flux condition
does not exist, estimates of flux normal to the boundary must be made by employing
Darcy’s law. This condition may vary as a function of distance along the boundary
and may vary in time in sorne prescribed manner. Finally, it is usually the case that
we have mixed boundary condition problems. A portion of a boundary may have a
prescribed head, while other portions may have a prescribed flux condition.

Most applications to groundwater flow and contaminant transport problems in-
volve two-dimensional solutions. If we assume flow in the z direction is zero, y is ver-
tically up and x is tangential to the earth’s surface (horizontal), Equation (4) becomes

O(K<0¢/0x) | 0(K,08/0y) _ o.0¢ (s)
dx ay "

which for unsaturated flow is a nonlinear parabolic partial differential equation. The
total hydraulic head is now (¢ = ¥ + y). Equations {3), (6), and (7) are required to
solve Equation (8). For saturated flow, i.e., the entire solution domain is saturated,
Equation (8) becomes elliptic. The right side of Equation (8) is identically zero.
When the aquifer is homogeneous and isotropic, {Ky = K, and K # f(x,y)], it yields
the well-known Laplace equation, which is independent of aquifer parameters; i.e.,

Vg =0 9)
Only boundary conditions determine the solution of Equation (9).

If we again assume flow in the z direction is zero, but orient both the x and y
coordinates in a plane tangential to the earth’s surface, Equation (8) is correct for
purely unsaturated flow; however, representing temporal variations for fully saturated
flow, the right side is not zero but becomes a function of total hydraulic head and
storage properties of the porous media:

O(T.08/0x) _ O(T,04/0y) _ B
dx + dy =5 ot (10)

where H is the total saturated thickness {unconfined aquifer) or is equal to ¢ (confined
aquifer), S is a storage coefficient, and Ty and T, are the transmissibility coefficients
that depend on H in the unconfined case. The storage coefficient is substantially dif-
ferent in the physical process it represents and in magnitude, depending on whether a
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confined aquifer or free water surface (unconfined) aquifer is being studied. We assume
fluid velocity in the z direction is zero. This assumption {the Dupuit assumption) is
reasonably true in fully confined aquifer problems and is only a rough approximation
in unconfined aquifer problems. Again, Equation (10) is a nonlinear parabolic equa-
tion that requires boundary and initial conditions of the form of Equation (7) to solve
for the state variable ¢.

To this point, we have been using Cartesian coordinates to lay the framework for a
mathematical model. Other forms of coordinates are also useful. For modeling direct
introduction of contaminant, such as by injection, into a confined aquifer, cylindrical
coordinates are the best to work with. If we assume (K = K, = K,), Equation (10)
becomes the linear one-dimensional equation (for the case of a homogeneous, isotropic,
confined aquifer):

Q"’_@_ 194 S 8¢ 1t

ar? " r dr K Ot (11)
where r is the radial coordinate from the well. We are assuming that velocities in their
vertical direction are zero and that there is no movement of water in a circular direction
around the well; i.e. water moves outward from the contaminant source along radial
lines that look like the spokes of a wheel. To solve Equation (11), suitable boundary
and initial conditions are required. One of the boundary conditions is at the well
perimeter, where recharge rate or hydraulic head may be specified.

Now that we have developed several forms of equations describing porous media
flow, we can conceptually consider the nature of the problem. Our approach has been
to use physics-based laws or principles, and thus we have developed deterrministic
equations. That is, we have not considered probabilistic processes although by nature,
porous media and soils are basically discrete. Freeze[3], has questioned our usual
deterministic view of porous media flow. There is a wide statistical variation in the
field parameters (e.g., hydraulic conductivity) that are included in our models. In
spite of these uncertainties we will continue to take a deterministic view in this paper.

Although several special analytical solutions have been obtained for important
groundwater flow problems, general solutions are usually required. This is particularly
true for contaminant transport analysis. There are very few useful analytic solutions
available for practical applications. As a consequence, the remainder of this section
will present numerical analog techniques of which the most prominent are domain
methods: finite differences or finite elements. Before discussing these, however, we
will discuss some mathematical concepts that are useful to not only understanding
numerical analogs but are essential to successfully applying these techniques.

The first concept is that of a solution domain. A solution domain for studying
groundwater movement consists of a finite three-dimensional space of soil and water
surrounded by a closed surface. The boundary of the solution domain is defined such
that boundary conditions are known or can be reasonably inferred. For this reason,
these types of problems are often referred to as boundary value problems, and the
accurate specification of boundary conditions is an impertant part of the problem.
Such a domain is shown in Figure 3.1. In this case, Equation (8) applies to the entire
solution domain. An example of each type of boundary condition is shown; thus, for
such a problem, the numerical analog must accommodate such conditions. Also shown
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Figure 3.1: Example solution domain showing boundary condition forms and an in-
ternal interface condition.

Figure 3.2: Discretization of solution dommain.
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is an internal interface condition requiring special numerical considerations since at
this interface a parabolic equation (unsaturated zone) becomes an elliptic equation
(saturated zone).

Upon defining a solution domain, initial conditions must be specified. Such con-
ditions are usually specified at discrete points in the solution domain. These points -
are dictated by the discretization required in order to develop a general numerical
solution, the second important concept. Figure 3.2 shows an example solution do-
main that has been discretized into subdomains. This example depicts a typical finite
element solution. This example assumes that more accuracy is required where sub-
domains are small. Consequently, a particular numerical method may he required.
Also notice that the solution boundary will involve some geometric approximation.
* In this case straight line segments approximate the solution boundary geometry. The
discretization assumes lumped average parameters are available for each subdomain.
This may not be the case, requiring calibration of the model before it can be applied
to a case study. All models require some level of calibration if they are to yield useful
results.

3.3 Finite-Difference Method

A finite-difference scheme can be constructed by discretization of the total solution
domain and application of Darcy’s law, Equation {2}, and continuity. We will take this
simple approach here, applying the method to a two-dimensional horizontal aquifer.
By using finite-difference approximations for the flow equatjon, Equation (10}, a nu-
merical model can be developed that may include the effects of recharge or accretion.
In the model, the soil matrix is assumed nondeformable and fluid compressibility ef-
fects are assumed negligible. The spatial variation of all parameters are assumed to
be negligible in the vertical direction and linear in the horizontal (x,y) directions.

Since the soil-water is assumed incompressible, a volumetric control volume bal-
ance can be made, equating inflow of soil-water across a control volume boundary,
I', to the rate of increase of soil-water content in the control volume, Q. Figure 3.3
shows a typical control volume, 2, with boundary (I = I'y + I, + I's + I'y). In the
finite-difference model, the groundwater basin is approximated by a mesh constructed
of lines parallel to either the x or y axis.

At the center of each resulting control volume is a nodal point, P;;. From Figure
3.3, the control volume balance is given by

94 d¢ d¢
AY (——Kxh 5;) le, — AY (_Kxhb—;) Ir, +4X (—Kyhg)—r) lr,
d 7
- AX(-—Kyhé%) Ir, HRAXAY) [q = AXAY (3-5?) In
(12)

where R is a soil-water volumetric source per unit ground surface area, assumed
uniform on 0 and § is the apparent specific yield that expresses the instantaneous
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volumetric soil-water removal (or addition) o the change in the volume of the aquifer
below the water table:

.

/-GROUNDWATER TABLE

K

T
!_,_-—0"" i il |-|£"
iy A
LN P
! ] I# P
i Lo | !
1 bopl j A
l L) { ]
4 / -t ~f
i | )
I | ;’ i/
! | ¥ 4
/ | =7
/ b/
/ T S, IMPERMEABLE
%_} N— - BOUNDARY
7
Zi]
PLj+l
P W
e
_ My r ;
/ Pish) Ezpm}[_n_ f ‘pm,,/
- Ma
z=nl * L PROJECTION OF
Pl,i-1 MODEL ONTO

HORIZONTAL
PLANE
|£0RIZON TAL REFERENCE PLANE
x

. Figure 3.3: Yinite-difference discretization scheme,

In Equation (12), the soil water flow rate terms are defined on the boundaries
of 1, which are located midway between nodal points. Additionally, the volumetric
rate of soil-water flow into §) is determined by the Darcian flow rate multiplied by the
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cross-sectional area of flow, which depends on the width (Ax or Ay) and the height
of the water table, h, above the impermeable underlying base.

A numerical solution can be determined by approximating the space derivatives
at the midpoint and time derivatives for a small duration of time, recalculating trans-
missibility parameters based on the new estimates of the model variables, and then
repeating the approximation procedure. The various rate and volumetric equations
that are applicable to each control volume are simplified by assuming

9 9
AY( K.h 45) I, = AY( K,h aﬁ) lom 420 (13a)
(RAXAY) | = AXAYR leono) (13b)
AXAY ( 3*‘5) o = AXAY (sg‘:) lcoro) (13¢)

where (xg,yo) are the coordinates of nodal point, P;;, and all parameters are held
constant for a specified period. The simplified equations are approximated by finite
differences, as follows:

8¢ _AY (15 — di-1,9)
—-AY (Kxhé;:’) l(xn_%,yo) = _T[(Kxh) lPi—L,j +(Kxh) lPa,jl_JT:)'{'—J_ (14‘3)
AXAYR |xy.p0) = AXAYR;; (14b)
K+l 4k
AXAY (s z;gs) [sage) = AXAYS:; (—q‘;&—t—ﬂ (14¢)

In Equation (14), R;;, and S;; are parameters evaluated at nodal point Py
In (l4c), the superscript K indicates values of the variable, ¢, evaluated at time
(t = kAt), where At is some timestep size. It should be noted that the finite-difference
approximations are based on the assumption that all parameters vary linearly between
nodal points; consequently, other approximations can be developed assuming more
complex variations of the model parameters.

The numerical algorithm is to first estimate all parameters based on the known
values of ¢ (and b) at some time level (t = kiAt). If (k = 0), then the model time
is zero and all values of ¢ are to be defined by the initial condition of the problem.
The second step of the algorithm is to compute values of the variables ¢¥*! from the
several nodal equations developed by applying Equation (14) to each nodal point in
the problem domain. The third step is to recompute the various parameters and the
groundwater table depths, h, at each nodal point based on the new values of ¢, and
then proceed to steps one and two.

From Equation (14), a nodal equation can be written as

(¢1 1,j ¢I‘]) (QSE ¢l—1u) (¢iJ+1W¢iJ)
- ol By g o (00T Eml Ay o, BBl px
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C4(¢ij = dij-1)

(6EH — o))
AY

At

where the coefficients (C;,Cs, Cs,C4) follow from Equation (14a). Rewriting Equa-
tion (15} with respect to nodal point values of ¢ gives

+ Ax + Rij AXAY = Sij AXAY (15)

[, 2y OX LY 40,85 4y (oY
¢’1.] (Cl Ax + CZAY + Ca Ax + 04/_\y) + ¢’1-1,,| (""03 AX)

JAN A A
+ Piz1y (_CIKE) + Pij-1 (-—CrA_;) + diji1 (—sz—;)

(¢ — k)

Applying Equation (16) to each nodal point in a n-nodal point mesh of the prob-

lem domain results in a system of n-linear equations that can be written in matrix
form as

C¢+R =S¢ (17)

where C is the global matrix of coefficients from Equation (16); R and S are arrays
using parameters describing a source flow rate and apparent specific yield at the nodal
points; and ¢ and ¢ are nodal point values, and the time derivative of nodal point
values defined by

b= 18 — %) (18)

For groundwater basin modeling problems where the water table varies slowly, the
C, R and S arrays are computed based on values of ¢ at timestep k. To better esti-
mate the water table gradients, however, the ¢ vector contribution may be computed
as an implicit expression giving

Cl(1 - )" + e ] + R = § (¢**1 — ¢¥)/At (19)

where (0 < ¢ <1). For (¢ = 0), an explicit algorithm results. For (e = 1), a fully
implicit algorithm results. For {€ = 1/2), the well-known Crank-Nicolson algorithm
results. Stability and convergence criteria for the various time-domain solution tech-
niques are discussed in McWhorter and Sunada[9]. Equation (19) can be rewritten
into the more convenient form

[e C—S/AtJ g =[(e~1)C - S/AtF ¢* ~R¥,0< e <1 (20)

The superscript notations on the parameter arrays indicate that values are calcu-
lated at timestep k. The matrix system of Equation (20) can be solved by iteration
or the Gaussian elimination method to solve for ¢**!. In Equation (20), the constant
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head boundary conditions are specified in setting

5:4]-1 = ¢%‘J = ¢;; (boundary condition) (21)

3.4 Finite-Element Method

The finite-element method is now widely used to solve regional aquifer problems posed
in a horizontal two-dimension scale as well as vertical slice two-dimensional scales.
Bear[1] and Pinder and Gray({11] review some of these efforts. Some authors perceive
several advantages to the use of finite-element methods over classical finite-difference
methods. The most often cited are the following: )

1. Ease of using a variable arbitrary discretization mesh

2. Ease of incorporating boundary conditions without special gradient
approximations.

3. Ease of dealing with heterogeneous-anisotropic domains.

There are two basic ways of developing a finite-element mumerical analog: the
variational functional technique or the Galerkin technique. Both methods lead fo
identical results for the type of symmetric problems we are dealing with here. Because
the Galerkin technique is somewhat more general and is widely cited by those applying
finite element methods to porous media flow problems, we shall base our development
on this method.

The Galerkin finite element technigue is basically a rule for reducing the governing
partial differential equations to a matrix statement invelving a matrix of known ele-
ments and a matrix of unknown state vartables. The Galerkin formulation solves the
governing partial differential equation by setting the governing equation orthogonal
to some error weighting function: '

j (B(§) - f)w =0 (22)

where B is a partial differential operator (operating on the variable ). f is some func-
tion, and w is a weighting function. Since the horizontal two-dimensional problem
was studied in the previous section, the vertical slice problem will be considered here.
Using Equation (8) as the governing equation, Equation (22) becomes, on substituting
Equations {8) and (5),

[ [peteton  flterts)

o 5 S| Nidf =0 (23)

where e represents a particular finite element domain 0° and w equals Nj.
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The next step is to define a finite element shape, which may range from trian-
gles to quadrilateral shapes with special curved sides to geometrically simulate the
boundary. In this derivation we will illustrate the finite-element method by using
the commonly used triangle (shown in Figure 3.4). Finally, we make an assumption
approximating the state variable within this domain and on its boundary; ie., we
specify a trial solution function such that

=3 Nigs (24)

where qﬁ approximates ¢, ¢ are the nodal values, and N; is a shape function. For
simplicity we shall assume Nj is a linear polynominal function of space, requiring
three vertex nodal points in triangular finite element 3¢,

Equation (23) is integrated by parts, Equation (24) is substituted into the results,
and the indicated differentiations and integrations are carried out over element 2°,
yielding the element matrix equation

S {¢}* + P{¢}° =0 _ (25)
where element matrices are given by
k* [ (y%a) _(YISY%S) (}’12}’23) ]
S = 4}_":0 (¥13) =(y12v13)
| symmetrical (v72) ]
(26}
e [ (x35) —(x13x23)  (Xu2%23) |
+ I (xds)  —(x12%13)
| symimetrical - (xdy) ]
where (y;j = y; — vi) and (x; = %, — x;) and
| vene [2 11
pe WAL T 5 ) (27)
12 0111 2

and {¢}° is a vector of nodal state variables, {$}® is a vector of nodal state variable
derivatives with respect to time, and A® is the element area. Zienkiewicz[15] gives
complete details on the derivation of element matrices and useful matrix formula.
Each element matrix is a function of lumped element parameters and the global
coordinates of its nodes. In order to carry out the required integrations, it is assumed
that the parameters are constant in each element. Equation (25) is strictly applicable
to interior elements or where there are no specified element boundary conditions.

The next step after deriving the completely general element matrix equations is
to assemble each element matrix equation into the global system equation:

S{g} + P{¢} = {F} (28)
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where 5 and P are square-banded system matrices that are functions of the element
conduction and storativity parameters and spatial discretization, {¢} and {¢} are

Figure 3.4: Finite-element triangle.
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Figure 3.5: Finite-element layout for Upper Coachella Valley groundwater basin
model{14).
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vectors of the unknown state variable and its time derivative, respectively, and {F}
1s a function of specified boundary conditions. :

Algorithms for assembly of the system matrices, Equation (28), are given in sev-
era] tests: Zienkiewicz[15], Myers{10], and Segerlind{13]. Generally, the approach in a
computer program is to initialize the matrices to zero and then add in each element
contribution in a way such that each node equation will have all of the element con-
tributions accounted for. Specified boundary conditions are conveniently handled by
entering the boundary condition in {F} at the appropriate node number level, enter-
ing a 1 on the diagonal of § and zeroing out all the other matrix elements contributing
to that node equation. Natural boundary conditions, i.e., zero flux conditions, are au-
tomatically accommodated without any special provisions. Flux boundary conditions
are entered into {F} as described in Myers[10].

A general finite-difference formulation of the temporal term in Equation (28) is
given by

[ZI-EP + eS} ot = [-ALEP - (1 - E)S] ¢t + PR 4 (1 ~ ¢)F (29)
where At is a specified timestep. For (e = 1/2) the Crank-Nicolson method results,
for {¢ = 1} a fully implicit method results, and for (e = 0) a fully explicit method
results. The horizontal two-dimensional problem model can be developed by following
the previous derivation and using the appropriate governing flow equation.

Computer programs written for the finite element method are commonly written in
FORTRAN language. Full advantage of the symmetrical, banded nature of the system
matrices is taken to minimize computer memory requirements and to maximize the
solution speed. Matrix solutions are generally by Gaussian elimination.

An excellent example of applying the finite element method of analysis is a study
of water level and water quality effects in the Coachella Valley, California[14]. This
area is characterized by a large, unconfined groundwater basin in the desert region
of southern California in the vicinity of Palm Springs. The approach taken was to
use an existing two-dimensional model and apply it to the horizontal movement of
water in the aquifer. Figure 3.5 shows the area modeled, which is surrcunded by
nonwater-bearing deposits. This particular model uses isoparametric quadrilateral
elements, which are also shown in Figure 3.5. Isoparametric elements are simply a
parametric algebraic formulation to transform nonrectangular elements into rectangles
for purposes of the finite-element formulation.

Substantial efforts were required to identify boundary conditions and basin sur-
face element inputs (e.g., artificial recharge) or outputs {e.g., pumpage). Calibration
of the model was required (always the case) since imperfect knowledge of transmis-
sive and storage parameters was available. This was done using historical data on
inputs, outputs, boundary conditions, and measured water levels. Figure 3.6 shows a
comparison of simulated and measured water levels at three points in the basin after
calibration was completed.



Environmental Modelling 49

o
! T
-20 pu—
40 ~
———  WELL 45/4E-1N1 ]
-80
O~ = =0 NODE 133 —{
o}
-80 — ‘|
100 r ! | r | [ l
o
|
e
.10
3 —
-
£ -20 .
: T
E
8 - Q — WELL 4S/ME-18N1
a
[T . O== =) NODE 185
bre
W
Z 50—
]
» 60 be
['%)
-t
€ o ] ! | | ] ] ]
~
<
z
z
w
[G] 0
z i | |
o«
I
S -0 -
_20 ——
-30 J
———— WELL 55/E-22Q1
-0 —
O==—=0 NODE 213
50 b
=50 |— b
-0 | | | ] | I |
19385 1940 1945 1950 1955 1960 1965 1970 ta913

Figure 3.6: Comparison of measured and simulated water levels for Upper Coachella

Valley groundwater basin model[14].
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3.5 Unified Domain Methods

Hromadka and Guymon[7] and Hromadka et al.[8] have shown that an infinity of do-
main methods may be accommodated by a single mass lumping matrix system. This
method, which is called Nodal Domain Integration, stems from the same concept as
the Galerkin weighted residual method. A Galerkin finite-element formulation is ob-
tained by defining an element shape and trial function and integrating over the finite
element domain. Other mass lumping schemes can be devised by redefining the in-
tegration domain and the density of the state variable approximation. For example,
assuming a triangular element linear trial function and integrating over a subdomain,
§Y;, defined geometrically as one third of a finite-element area drawn to include one
vertex as shown in Figure 3.7, an integrated finite-difference scheme is obtained. De-
pending on the domain of definition or the assumed trial function, an infinity of mass
lumping numerical analogs may be obtained.

Figure 3.7: Subdomain &; as the union of all nodal domains associated with node j.

Similar to the finite element method, a general matrix equation may be defined

$°{¢}° + P*{$}. = {F} (30)

where for a linear trial function, triangular finite element S is defined by Equation
(26) and

1
9: eAe TI
peo VAT (31)
11

3(n+2)

e
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where, as before, e represents a particular interior finite element, A® is the element
area, and (8*)° is the element term defined by Equation (6). For (n = 2), the usual
Galerkin finite-element formulation is obtained. For (n = 22/7) (approximately %),
a subdomain integration formulation is obtained. For {7 = o0}, an integrated finite
difference scheme results. '

Thus a single computer code can be developed that encompasses all these domain
numerical analogs. Through the specification of a single parameter, , one can choose
a numerical scheme that best fits the type of problem being considered. For instance,
where the state variable, ¢, may be changing slowly in space, specification of (7 = 2)
may be best, Where sharp wetting fronts occur in the solution domain, the specifi-
cation of a large n (say 1,000) may be more appropriate. There is no reason why 7
may not be a function of space and time, permitting one the luxury of having the
“best” numerical analog approximation in various subdomains of the solution region
or where conditions may change with time. Time domain solutions are similar to
those used in finite-element solutions (i.e., Equation (29)).

An example of the nodal domain integration method applied to a groundwater
movement problem is presented in Figure 3.8. The solution domain consists of a two-
dimensional vertical slice of soil containing several semi-pervious clay lenses. Figure
3.8 shows the solution domain divided into triangular elements (approximately 10 ft
high by 30 ft wide). Ponded water in a flood control basin located near a landfll site
tends to move horizontally in pervious layers rather than to percolate vertically to the
underlying groundwater aquifer. Water is ponded to a 20-ft depth for 30 days. This
example demonstrates the need for good geotechnical data as well as a mathematical
model simulation to verify the assumed hydraulic behavior of groundwater flow and
contaminant flow. The model includes both saturated and unsaturated flow phenom-
ena. The time domain solution is by the fully implicit technique to accommodate
internal free water surface (phreatic) conditions. For this example n was set to 1,000.
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