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BACK TO THE UNIT HYDROGRAPH METHOD

T.V. Hromadka I11, M.ASCE
Johannes |. DeVries?, M.ASCE

Abstract

In this paper, the basic single area unit hydrograph model is shown
1o represent a highly complex, rational, link-node model which includes
(i) variable effective rainfall distributions aver each subarea, including
variations in distribution magnitude, timing, and storm pattern shape; (ii}
variations in the subarez runoff response on a storm class basis; (iii)
variations in channel flow routing response on a storm class basis,
induding peak attenuation and translation timing effects.

Introduction

Due to the nondeterministic nature of the rainfall-runoff processes
occurring over the catchment, the mathematical descriptions of these
processes result in stochastic equations. Additionally, the so-calied
deterministic rainfall-runoff models used to describe the several physical
processes contain parameters or coefficients which have weli-defined
physically-based meanings, but whose exact values are unknown. The
boundary conditions of the problem itself are unknown (e.g., the temporal
and spatial distribution of rainfall over the catchment for the storm event
under study and also for all prior storm events) and often exhibit
considerable variations with respect to the assumed boundary congitions,
the measured rainfall at a single location {e.g., Nash and Suicliffe, 1970;
Huff, 1970). Thus the physically-based parameters and coefficients, and
also the problem boundary conditions, are not the assumed vaives, but
are instead random variables and stochagtic processes.
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Eginfgll-llung.ﬁ Model Errors
inisti i - odel which iransforms
M be a deterministic rainfall runo{f m : Y
uge!;e:ain{all data for some storm event, 1, noted by Pg'(t), into an
sa

. ate of runoff, Mit), by
st M: Pgitt) - Mi(D) 0

where ti5 time.

i i i(t) be the
i(t) be rainfall measured at a single gauge, and Qgi(t) be
offllrer:ezgtfrld at the stream gauge. Various error (or uncertainty}
r,:rr:ns may be combined by the relationship,

Qgl®) = Mit) + EM(D) @

where Emi(t) is a conditional notation for total error, given model type M,
and storm event i
The terms in Eq. (2) are each a realization of a stochastic process.

D(t) is not known, but is a
furure storm event D, the Bm
gﬁz::i;naof a stochastic process distributed as [EmP(t)} where

{OuPE = MDD + [EaP(01 3)

} ssociated
In Eq. (5), [QuP() and [ExP)) are the stochastic processes assoc
1o the catc;l\mnt runaff and total modeling errors, respecti v'ely, assmthe m:t;g
with model M, for hypothetical storm event D. In pred[n:ho[r)lEm o
output of BEq. (3 is a stochastic distribution of outcomes, QMb 1 Shov'd
Abe a functional eperator on the ocutcome (e.g., detention a%n '; o ne;
ak flow rate; median flow velocity, etc.) of_ storm event ,D] e ne
value of A noted as AMY, i5 a Tandom variable distributed as {Am"l, w

(AMP) = AIQMPO) @
loping Distributions for imate:
The distribution for [EnD{t)) may be estimated by using the
available sampling of realizations:

(Bmittl = (Qgi(t) - MiD}, 1 = 1.2~ s

i he "severity” of
Assuming elements in {EMit) 1o be dependent upon ¢ .
Qs:;?t?lzge may partition {Emi(D)} into classes of storms such as mild,

major, flood, of others.
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The second assumption involved is to assume each FpilD) is a

function of precipitation, Fi(t) = F(Pyi(t)). Em'(t) is now expressed as a
ctausal linear filter {for only mild conditions imposed on Fi(1)), given by
the stochastic integral equation (see Tsokos and Padgett, 1974}

To
Ep(to) = I F(to-s) hyi(s) ds (6
==

where k(1) is the transfer function between (Eni(t), B(1)). Instead of Fi(p),
one may use in (6) the storm rainfail, Pgi(t), and the model estimates itself,
ML),

Given a significant set of storm data, an underlying distribution
[hy€t}] of the {h(D)) may be idenlified, or the [hai(t)} may be used directly
as a discrete distribution of equally-likely realizations. The predicted
response from M for future storm event D i5 modeled as

[QmPB] = MD(D) + [EmD(D)] )
Combining Egs. (8} and (9),

.
[Q O] = MP(t) + ] FP(t-s) {hyy(s)] ds (8)
=0
and for the functional operation A, Eq. (4} is rewritten as
L
(APl = AIOMPW] = AMP() + I FO(5-5) {hoy(s)) dis) o)
s=(}

Confidence interval estimates for the chosen criterion variable can
now be obtained from the frequency-distribution, [AD1.

A Translation Unsteady Flow Routing Rainfall Runoff Model

The catchment R is subdivided into m homogeneous subareas,
R = U R;, such that in each Rj, the effective rainfall, e,-i(t), is assumed given

eji(ty = A1+ X} Fie) (10)
where A; is a constant; Xji is a sample from [X;].

The subarea runoff is
L4

1
q,i(t)=[ e/(t-s) ¢;(s) ds = ] A(i+X;") Fitt-s) ¢;(s) ds (1n

=0 g=0
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At this stage of development, unsteady flow routing along channei
links is assumed to be pure translation. Thus, each channel link, L, bas
the constant translation time, Ty. Hence for m links,

Qi = X qjt-v) (12)
i=
where qj‘(t -t is zero for negative arguments and tj Is the sum of link
wavel times.
For the above assumptions,
1 m .
Qglt) =J Figes) (2 44D (1)) ds 3)
=0 j=1
In a final form,
t 9 .
Qi = ] Fi(t—s)z’kj $i(s-1j) ds
’,:

e=D
14

i y .
+ I Fif1-s) Z Ay Xii ¢il(s~1:i) ds
5=} i

In the above equations, the samples {Xji} are unknown for any
future storm event i. From Eq. (14), the model structure M, used in design
practice is

f g .
Ml = I Fi(t-s) z ¥ le(s-’tj) ds (15
s=( =1
Then, Qgi(t) = M¥t) + Emi(t) where
L]
Emi() = I Fi(t-s) bpy(s) ds as)
1=l

where hpi(s) follows directly from Egs. (14) and (15).
Should the subarea UH all be assumed fixed, (i.e., &;i(1) = ¢4(0),

L
Mi() = ] Fi(1-s) D(s) ds 17}

=0
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Additionally, the distribution of [hy(t)] is

[hm(O] = Y, [X;] X $;(t-15) as)
j=t
The stochastic integral prediction is
1 I .
IQumPit] = f F(t-5) ®(s) ds + I EO(1-5) (hm(s)) ds {19)
=0 =0

A_Muliilinear Rainfall-Runoff Model

Each subarea's effective rainfall, (), is written as a sum of
proportions of Fi{t) translates, on a storm class basis,

ety = 2.: Ak (1 + X} Fit - 8% Fi(o) € [E) (20)

where Xjii and 9’ are samples of the random variables distributed as Xpd
and [B}k], respectively.

On a storm class basis, each channel link is assumed to be linear
(Doyle et al, 1983)

01t = 3, ashyit- o) n
!

where O1}(t) and Iji(t) are the outflow and inflow hydrographs for link 1,

and storm event i; and [a4 and [ad are constants which are defined on the
storm class basis used for the input, Fi(t). Thus, the channel link flow
routing algorithm is multilinear with parameters defined by storm class,
£, (eg., Becker and Kundezewicz, 1987).

For L links, each with their respective stream gauge routing data,

TiL -1 LiF] L]
OL(‘}=E&{E ag-1...... Ea.; 25 (b~ 00 - 0 - mong - Oy (22)
A=) A=t A=l 4=l :

Using an index notation, the above O (1) is written as
OuU) = Y acs Lift- 0ep) (23
ofs

. The predicted runoff response for storm event D is the stochastic
integral formulation

1QBw] =[ FR-( L 3 alba, 2 Au(1+1X]) (518
. j=1 <y k
| (24}
- wds)) ds: FP() € [Epl
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k to th it H aph M
A stochastic integral equation that is equivalent to Eq. (24} is
t
1QuP®] = J F2(t-5) (n(s)] ds; FO() € [Ep) (25)
s=0

where now [11(s)] is the distribution of the stochastic process representing
the several sets of random variations. In prediction, the expected runoff
estimate for stovm events that are elements of [Ep) is

T

E[QmP(t)] = [ FO(1-5) E[n(s)] ds; FO() € [Ep} (26)
s=l

which is the well-known unit hydrograph method.
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