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Solution of parabolic equations using an eigenvalue
method for time advancement
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The use of numerical time advancement techniques 1ypically involve development
of matrix svstems that are solved in timestepped form. In this paper, an

eigenvalue approach is used to exactly solve the fundamental matrix system. In
1his way, nurmerical crror ocours only in the spatial dervative terms, and not the

temporal term.
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1 INTRODUCTION

Numgcrical solution of partial differential equations
(PDE) of the parabolic 1ype is traditionally accomplished
by finite difference, finite ¢lement, collocation, or other
techniques that resolve the problem setting into a set of
linear equations {e.g. Ref. 1). Such parabolic equations
arise in problems in the fields of heat flow, groundwater
flow, and containment (ransport, among others. In order
to advance the usual nodal point vector splution in time,
a lime-stepping technique is typically employed such as
Crank-—Nicholson, explicit, or implicit methods, which
use matrix solutions computed at small time increments
in order to achieve time advancement.

1u this paper, we recal! the use of eigenvalue solutions
that directly and exactly solve the matrix system with
respect 1o the time derivative term. Although complex in
application, once formulated into software, the eigen-
value method for solving the time derivative lerm
affords clear advantages over the usual (ime-stepping
techniques. These advantages include:

(1) exact solution of the time derivative component of
the matrix sysiem;
(2) ability Lo solve [or the nodal point vector value at
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arbitrary time ¢, without solving for nodal values
at intermediate time-steps; and

(3) elimination of considerable quaniities of repetitive
calculations required by the usual time-slepping
procedures.

2 DEVELOPMENT OF THE NUMERICAL MODEL

Although the discussions pertain to parabolic equations
in general, we will focus our attention on generalized
flow modeling. For the one-dimensional case, unsteady
flow (groundwatey, heat, and other phenomena) in a
homogeneous medium may be described by:

or_or
oxt o

where x and r are spatial and (emporal coordinites,
respectively; and T is the state variable. Tn addition 10
eqn (1), boundary and initial conditions are needed to
have a well posed problem.

The general numerical approach is to discretize the
spatial domain into smaller domains using N nodal
points, which have associated nodal values 77,
k=1.2,...,N at time-step 7, wher¢ each time-step is
of duration As. For evenly spaced nodal points, a matrix
solution of cqn (1) may be writlen in generalized matrix

0<x<L (1)
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form as:
ST+¥T =L (2)

where 8 is an N x N symmetric stiffness matrix; ¥ is an
N x N symmetric capacitance matrix; T is an N x 1
column vector of nodal values; T is an N x 1 column
vector of nodal value time derivatives of the form
8T, /8r; and L is an N x 1 column load vector.

Many numerical techniques may be written in a
unifying matrix form analogous to eqn (2) by specifying
the capacitance matrix as depending on a parameter 7,
that is, ¥ = ¥(xy). For one-dimensional problems we
have:

n 1 0 07
71 0 0
01 g 1 0
"P I e——— 3
) n+2]: I : ®
o ... 0 1 71
|0 ... o ¢ 1 nj

For n = 2,3, 00, we obtain the Galerkin finite element,
nodal domain integration, and finite difference modal
equations, respectively,

In order to solve the time derivative term in egn (2),
the column vector T is replaced by the approximation
T = (7' — T%)/A¢ and a well known technique such
as the Crank—Nicholson method is employed. Thus, we
obtain:

Ti + Ti‘+l T!’-i—] . T: .

S+ ¥ 3 =L (4)
where T/=T(iAt), and 7T*'=7((i+1)A1). By
rearranging terms, eqn {(4) becomes:

('P(n) ‘g S)T’“ (tp( )hﬁs)r +L (5

In eqn (5) initial conditions at time ¢ = { ure supplied by
the known vector g and boundary conditions are
imposed which define the load vector L. The solution
vector of nodal values at subsequent time-steps are
computed by repetitive solution of eqn (5). Thus, the
solution vector at time ¢ is obtained by solving eqn (3) a
total of ¢/ Af times,

Returning to eqn (2), ST + ¥(n)T = L. If we solve for
T, we obtain:

T = AT +b(n) (6)

where A(n) = —¥ '(#)S is a real symmetric N x N
matrix and b{) = ¥~ ' ()L is an N x 1 column vector.
Since A(n) is symmetric it has real eigenvalues and a
complete set or N orthogonal eigenvectors (henceforth
we shall omit explicit reference to #). Observe, A and b
do not depend on 1. Consequently, eqn (6) can be
directly solved using eigenvalue techniques so that the
solution vector at time ¢ can be obtained in one step.

3 DEVELOPMENT OF THE EIGENVALUE
METHOD

If we combine eqn (6) with the initial condition T(0) = g
we obtain a vector initial value problem (IVP) of the
form:

{T:ATH:
T{0) =g

where A is a real N x ¥ banded symmetric constant
matrix and b and g are real N x | constant vectors. This
system is quite numerically expedient since A is
symmetric and therefore has real eigenvalues and N
orthogonal eigenvectors. It is therefore possible to
oblain a closed form solution.

First consider the associated homogeneous system
T = AT. Rearranging, we obtain T — AT = 0. Given a
solution of the form T =e¢*u, then T = AeMu; this,
upon substitution, yields:

AeMa - Aetu =0
or:
eM(Au-- Au) =

Since ¢ # 0, we may divide both sides of the above
equation by e* to obtain Au — Au = 0 so that A must be
an eigenvalue and u must be an eigenvector of A.

Now let @(r) be thc fundamental matrix whose
columns are each independent solutions to the homo-
geneous system. Then, any solution has the form:

T = M

where ¢ is a real N x 1 constant vector 1o be determined.

Since A is constant and real-symmetric, the funda-
mental matrix @ () will have a particularly convenient
form. First, define P to be the matrix whose columns are
the cigenvectors of A and let A =diag(\y,..., Ay},
where the A; arc eipenvalues of A taken in the same
order that the corresponding cigenvectors occur in P,
Since A is symmetric, P will be orthogonal, ie.

P~ = PT and the following similarity relations hold:
A = PAP!

and:
A =PTAP

That is, A is orthogronally diagonalizable.

If we let Y=P'T and substitute into the homo-
geneous equation we obtain the decoupled system
Y = AY. This represents N equations of the form
dy;/dt = )\;y;, each having solution y; = e**, Thus, the
fundamental matrix for the decoupled system is:

D(r) = diag(e™’,...e")

From this we may conclude that the fundamental matrix
tor the homogeneous system is:

D) =PD{z)
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Therefore, any solution to the homogeneous system
must be of the form T = PDe, where ¢ is a vector of
constants to be determined.

Now we shall return to the non-homogeneous
problent. Jn order to obtain the solution to the non-
homogeneous problem we shall employ the technique of
variation of parameters: assume a solution of the form
T(r} = @u(¢). Substituting into IVP and applying the
rule for differentiating a mainx product, we obtaisn:

d do dn
a[@ulz—at—“+(b-dijq)ﬂ+h

However, d®/di = A®, 50 we have:

A®u+¢'%§='AtDu+b

Clearly D is non-singular and so D™ = diag (¢ ™", .|

e™¥*). Since ® =PD, ® is nonsingular and ®! =
D 'P~!' = D7'PT. Therefore, du/dt = @ 'b = D'PTh.
Integration vields:

n= J D 'PThdr+ ¢
Back-substitution now yields:
T = PDc+ PD jn"Pdea
= PDc + PD JD(-—-:)Pder

The only quantity inside the integral that depends on ¢ is
D{—t). Therefore, upon integrating we obtain;

T = PDc¢ — PBA'D'PTh
where A~ = diag{1/X,,...,1/Ay). Since A~ and D!

are diagonal matrices we can interchange the order of
muitiplication to obtain:

T = FDc — EFDDAPTh
= PDc - PA~'PTD
=PDec-A""b

since PA7PT = AL

Now we force the solution 1o satisfy the initial
condition T(0) = g and solve for ¢ to obtain:

c=Pl{g+A'b)

where we have used the fact D{0) = 1. Substitntion now
yields the closed form solution:

T=PD()Pg+A'B)-A"D

4 APPLICATION AND COMPARISON TO OTHER
NUMERICAL METHODS

For comparison, the ¢igenvalu¢ method was applied 10
two simple test problems:

J 8T _9°T
o o ot
(application 1} T(x,0) =1 O8<x<)

T(0,1)=0=T(1,1), >0

and:
{ 8T _ 8T
N & " o
(application 2) ¢ T(x,0)=2, OB<x<}

L T(0,6) =1 =T(1,1), t>0

Observe that applications 1 and 2 differ only in their
initial/boundary conditions,

To begin, we subdivide the interval [0,1) with ¥ +2
evenly spaced node points x, = k/N+1,k=0,1,2,...,
N+1 If we define T,(t) = T(xg, ¢}, then d7/dr=
BF{x, s} fork=1,23,... N

Using finite differences for the spatial derivative we
obtain:

T 1) Teot = 2Te & Tyns

axt 7 (Ax)?
Therefore, substitution into the above definition yvields
the system of N ordinary differential equations;

AT, Ty - 2T + Ty

de (Ax)*

Specifically, for & == 1 we have:
dT, 2T+ 7T Ty

= S L
de (Axy  (Ax)’
and for k = N
dTy _ Ty —-2Ty  Tys
dr (Ax)?  (Ax)?
In matrix form we may write these equations as:
{T = AT +6
T0)=¢
where:
-2 1 0 e 0
A-‘—l—{;-[)l‘210--6
(Ax)? : :
1] ¢ 1 -Z)

i
and T = {
Ty

-4

For application 1, b = (0 and g has components all
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Table 1. Comparison of results of applying three numerical methods to application 1 for three interior nodes for node at x = 0-50

Time  Exact solution  Eigenvalue  Finite element  Nodal domain  Rel. % error:  Rel. % error; Rel. % error

method method iniegraticn eigenvalue finite element  nodal domain
method method integration

0-01 0-99% 0-979 0-887 (-901 2 11 g

0-02 975 0-931 0-786 0-833 4 9 15

0-03 0918 0-871 0-697 0763 5 24 17

0-04 0-846 0-306 0-618 0-700 5 27 17

005 0772 0742 0-548 0-641 4 29 17

08 0-702 0-680 0-486 0-388 3 28 16

0-67 0-637 0-622 0-431 0-338 2 32 16

008 0-578% 568 382 0-493 2 34 15

209 0-524 0-518 0-339 0-452 1 35 14

010 (474 0472 0-301 0414 0-5 36 13

011 0-430 4-430 0261 0380 D2 38 12

012 0-390 0-392 0-237 0-348 0-6 39 li

013 (353 0-357 0-210 0-319 | 40 10

0-14 0-320 0-325 G- 186 0292 2 42 Y

0-15 0-294 0-296 0-165 0-268 2 43 8

016 0-262 0-269 0-146 0-246 3 44 6

017 0-238 0-245 0-130 0225 3 44 5

0-18 0-215 0223 0-115 0-206 4 47 4

0-19 0-195 0-203 0-102 0-189 4 48 3

0-20 0-177 0-185 (-091 0-173 5 49 2

equal to 1. For application 2, b= [(1/{Ax)*)0 performance characteristics combined with the pre-

-0(1 /(A% and g has components all equal to 2.
The analytic solution to application 1 is given by:

4 Sne T G (2h + V)

o 2k+1

Tl(xrz) =

and 1o application 2 by:

o

I+

Tables 1 and 2 comparc the results of applying the
eigenvalue method to the two applications with the
resulis of applying various prevalent finite difference and
finite element technigues. The results show that the
eigenvalue method compares quite favorably to the other
presented techniques and demonstrates that it possesses
excellent stability and convergence characteristics. These

R Gin (2K + 1))
2%k +1

4
Tz(x,f): |.+‘_
w

viously mentioned advantages show that the eigenvalue
method is certainly worthy of further investigation.

The eigenvalue method was implemented in
MATLAB(c) which utilizes well established numerical
linear algebra techniques and thus provides a valid
means for investigating the fzasibility of the eigenvalue
method.

4.1 Limitations of the eigenvaloe technique

Because 1he matrix system of eqn (3) is non-singular, i
provides the necessary eigenvalues and eigenvectors
for solving the exponential function parameters. Conse-
quently, there are no limitations on the esigenvaluc
technique other than accuracy issues which are related
to nodal point density and placement (which are issues
that are not remedied by the eigenvalue technigue).

Table 2. Results of applying the eigenvalue method and otber methods to application 1 wsing three egually spaced interior nodes

Time =2 n=>3 7= 11 y=

oC

§-25% 0-50° 025 050 02% 050 Q25

0-50

Analytic
solution

Eigenvalue
method

Fourih-order
subdomain
approximation

Adjusted
nedal domain
integration

025 050 025 050

025 050 025 050

001
0-02
0-03
0-04
0-05
010
0-15
0-20

0-93%
(-941
0-876
0-807
0-73%
(461
0-285
0176
0-10%
0067

989
0-541
0-876
0-807
0-739
0-461
0-28%
0-176
0109
0-067

0361
0755
0-671
0602
(-543
0-335
0-209
0-131
0-082
0-051

351
0-743
0-660
0-592
0-533
0-327
0-202
0-123
0077
0-048

1-041
0-970
0881
1-796
0-718
0-427
0-254
0-151
0-090
0-053

0823
0-716
0-637
0-572
0-515
0-310
0-187
0-113
0-068
0-041

0-802
0-701
0-627
0-564
0-508
302
0-179
0107
0-25 0063
0-30  0-038

9381
0-933
0-873
0-807
(-743
0-472
0-295
0-185
0116
0-072

0979
0-931
0-871
0306
0742
0-471
0-29¢
0-185
0116
0-073

0-99%
0975
0918
0-346
0772
0-474
0-290
0177
0-108
0-066

G-862
0-756
0-672
5603
0544
0-335
0-209
0-131
0-082
0-051

0-923
0-789
0-690
0615
0-533
0-336
Q-205
0-125
0-076
0047

0-864
0761
0-678
0608
0-548
0-331
0-201
0-123
0-075
0-046

103
0-967
0902
0-330
0-759
0-468
0285
0174
0-106
0-064

0864 1003
0760 0-961
0676 (-898
00 0828
0-546 759
0331 0-469
0202 0287
0-123 0-175
0-075 0107
0046 0063

:’_ifalue of X.
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