WATER RESOURCES RESEARCH, VOL. 29, NO. 2, PAGES 531-534, FEBRUARY 1993

Testing for Nonzero Skew in Maximum Discharge Runoff Data
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Water Resource Council Bulletin 17B (Interagency Advisory Committee on Water Data, 1982)
recommends finding T-year flood values by fitting stream gauge data with a log Pearson III
distribution. A problem arising in using this method is that, as is well known, the estimator for the
skew of this distribution is highly variable and the computed 7-year values are sensitive to the value
of skew used. The variability in estimating the skew is studied in this note by computing operating
characteristic curves which display the probability that a sample from a site with a nonzera skew will
actually fall in a specific interval. In rough summary it is not usuaily possible to reject, at a high level
of significance the hypothesis that the skew at a site is zero by using only the data available for that site.

InTRODUCTION

Water Resource Council Bulletin 17B [Inreragency Advi-
sory Committee on Water Data, 1982) recommends the use
of a log Pearson III distribution, fit to yearly maximum
discharge data, for the prediction of T-year events. Other
methods have been proposed (see, for example, the discus-
sion by Cohon et al. {1988]), and an important area of
research is in obtaining more accurate methods for estimat-
ing extreme floods. However, to quote McCuen [1979, p.
269]

While accuracy of flood estimates is very important, consis-
tency is also an important consideration. Consistency requires
a uniform estimation procedure, and the U.S. Water Resources
Council issued Bulletin 17 and a revision Bulletin 17a for use in
defining flood damage potential at sites where a stream gage was
located.

Because of the authority of the U.S. Water Resource Coun-
cil, the procedure developed in Bulletin 17B is used exten-
sively.

Estimates for the skew coefficient are required when using
the log Pearson I1I distribution, and it has been known for a
long time that such estimates are quite variable. There are
several procedures suggested in Bulletin 17B to reduce this
variability, which include the use of generalized skew coef-
ficients from a map, estimates using regression equations,
weighted estimates, and estimates using ‘‘nearby similar
sites,”” in addition to just using the station skew. Since all
these improved estimators for skew combine individual site
skews, although sometimes indirectly as when a map of
regional skews is constructed, the variability of the skew at
a single site remains an important factor in the accuracy with
which the station skew is known. For example, when
estimates from several sites are combined to form an esti-
mate for station skew, the underlying assumption is that
these sites all have the same skew and part of the evidence
for that assumption is the individual site skew estimates
themselves.
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Historically, the variability of the skew was at first over-
estimated; Slade [1936] seemed to imply that a series of at
least 140 terms was necessary when estimating skew. The
point of Matalas and Benson [1968] was to indicate this was
not the case. In this paper a formula was given for the
standard deviation of the distribution of the usual estimator for
the skew, under the assumption that the skew was actually
zero. Even though the exact distribution of the estimator for
skew remained unknown, the value of its standard deviation
allowed one to crudely estimate the variation among sampled
skews from a distribution with zero skew. These estimates
could be also used to get a rough idea of the possible variation
involved when estimating a nonzero skew.

In the 24 years since the publication of Matalas and
Benson’s [1968] article, numerous papers have appeared
which deal with the problem of estimating the parameters in
a Log Pearson III distribution {see Arora and Singh, 1989;
Bobee, 1973; Bobee and Robitaille, 1975, 1977; Chowdhury
and Stedinger, 1991; Hardison, 1974; Hoshi and Burges,
1981; Hu, 1987; Kite, 1975; Lall and Beard, 1982; Letten-
maier and Burges, 1980; McCuen, 1979; Nozdryn-Plotnicki
and Watt, 1979; Phien and Hsu, 1985, Stedinger, 1980, 1983;
Tasker, 1978; Tasker and Stedinger, 1986; Tung and Mays,
1981; Wallis et al., 1974; Whitley and Hromadka, 1986a,
1986b; 1987, and references therein]. One way in which
progress has been made is that, even though the exact
distribution for the estimator for the skew remains intracta-
ble, the ability to simulate distributions on a computer has
increased dramatically.

Graphs of the distribution function for the estimator for
the skew, obtained by simulation, are given by Wallis et al.
[1974]. Such empirical distribution functions are also ob-
tained in this note where they are used in computing inter-
vals for testing the hypothesis of zero skew. Even though the
distribution of the estimator for the skew can be simulated,
the distribution obtained depends upon the value of the skew
of the distribution from which the sampling occurs. Thus it
seems that obtaining a test interval for the estimator requires
a knowledge of the unknown value of the skew which is
exactly the parameter one is trying to estimate. In this note
a standard statistical technique is applied to this problem:
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compute an interval for the skew estimator, for testing for
zero skew, and then compute the operating characteristic ¢
{¢is one minus the ‘‘power’’ of the test) of using this interval
as a test. By looking at the curves so constructed one can see
with what confidence one can distinguish between different
values of skew.

The example presented is the case of testing to see whether
the skew is zero, but any nonzero value of skew could be
handied in the same way. The case of zero skew is most
important for two reasons. One, the ‘‘average’ United States
skew seems to be approximately zero: the data from the 2972
gauging stations, each having a record length of 25 years or
more, used to construct the skew map of Bulletin 17B *“. . . sug-
gest that without additional information, such as the map
estimate of skew or a computed station skew, the best estimate
of skew would be —0.013" [McCuen, 1979, p. 271]. Two,
Appendix 14 of Bulletin 17B summarizes research showing that
among the distributions tested, the log Pearson III and the
lognormal, which is the log Pearson III with zero skew, were
the two best predictors of large floods among the group of
distributions tested and both were equally effective.

THE ESTIMATOR FOR SKEW

Water Resource Council Bulletin 17B recommends the use
of a log Pearson III distribution, fit to yearly maximum
discharge data, for the prediction of T-year events. The
logarithm of the yearly peak discharge then has a density
function of the form:

Ax) = [W|alTB)(x = ¢)al® ' exp—[(x — ¢)a]l (1)

where, in the case of positive a, the density is given by the
expression (1) for x > ¢ and is zero for x < ¢, while in the
case of negative a the density is given by (1) for x < ¢ and
is zero for x > ¢. Computing the mean u, standard deviation
o, and skew v from equation (1) shows that

o?=a’h, y*=4/b, p = c+ ab @
where a has the same sign as y.

In the case of zero skew, which is the limiting case where
the positive parameter b tends to infinity to obtain y = 0, it
can be shown that the density in equation (1) tends to the
density for the normal distribution. In this way the lognormal
distribution is the special case of the log Pearson III distri-
bution in which the skew is zero.

It is further recommended in Bulletin 17B that the param-
eters a, b, and ¢ be estimated by using equation (2) and the
usual moment estimators for u, o, and vy, with the moment
estimator for y scaled to make it less biased. Specificaily,
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These recommendations raise statistical problems which
remain open (for a brief summary, see Chowdhury and
Stedinger {1991, and references therein]). For example, the
accurate computation of confidence intervals for the T-year
flood has been solved by Stedinger [1983] and Whitley and
Hromadka [1986a, 1986b, 1987] in the case where p and o
are estimated but yis known. The case where p, o, and y are
all estimated by equation (3) has been considered, but not
completely settled, by Chowdhury and Stedinger [1991] and
R. Whitley and T. Hromadka (Confidence intervals for
T-year floods with estimated skew coefficient, in prepara-
tion, 1992). If the skew is zero and therefore the logarithms
of the data normally distributed, the computation of confi-
dence intervals is an easy application of the known noncen-
tral ¢ distribution [e.g., Stedinger, 1980].

The situation with confidence intervals is typical of the
problems raised by the use of the log Pearson III distribution.
As a general rule, most statistical calculations are easy in the
case of zero skew, and complicated, sometimes impossibly so,
in the case of nonzero skew. Since the statistical analysis of the
maximal discharges at a site is more difficult in the case of
nonzero skew, there is a practical reason to test the hypothesis
that the site skew is zero. If it turns out that the assumption of
zero skew is consistent with the data, then the use of zero skew
allows a much deeper statistical analysis of the data.

OPERATING CHARACTERISTICS

The usual way to test whether the unknown skew param-
eter is zero, is to choose a level of significance 1 — p, 0 <p <
1, and compute a number ¢, so that the probability that ¥is, in
absolute value, less than ¢,, given that y = 0, is p. In symbols

P(

Jl<tly=0)=p )

Note that the value ¢, depends on the number m of points in
the sample size and on the estimator (3) used to estimate 7.
For example, in order to construct the curves of Figures 1
and 2, it was necessary to compute, by a simulation, the
values ¢, = 0.77 for p = 0.90, m = 20 poiats; ¢, = 0.59
forp = 0.80, m = 20 points; t, = 0.53 forp = 0.90, m =
50 points; and ¢, = 0.40, forp = 0.80, m = 50 points. For
a specific instance, if ¥ is the estimator given by (3) for a
50-point sample from a log Pearson III distribution with zero
skew, then if repeated samples of size 50 were taken from
the distribution, the computed skew estimates would in the
long run fall in the interval [—0.53, +0.53] 90% of the time.

A good way to understand the discriminating ability of this
test is to compute its operating characteristic ¢, which is the
function defined by Breiman [1973, p. 131]:

e(x) = P(F] <t,|ly =x) )

For a sample size of m points, for each possible true but
unknown value x of the skew, this curve gives the probabil-
ity ¢(x) that the sampled estimate ¥ of the skew will fall into
the interval (—1,, ,) and therefore that we will mistakenly
not reject the hypothesis that the skew is zero.

If X is a random variable representing the logarithm of a
log Pearson III random variable with skew v, then — X is the
logarithm of a log Pearson III random variable with skew
—v; likewise, replacing x; by —x; in equation (3) changes the
sign of . Thus the operating characteristic satisfies ¢(—x) =
¢(x) and therefore only needs to be calculated for x = 0.

Operating characteristic curves are given below for 90%
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Fig. 1. Operating characteristic P(|3| < 1,y = x}, 20 data points.

and 80% test intervals and m = 20 and m = 50 data points.
These curves were obtained from simulated empirical distri-
bution functions for % using, for each point on the curves,
30,000 values of %, based on, respectively, 600,000 or
1,500,000 log Pearson IIl random variables generated by
methods described by Devroye [1986]. The data sets for m =
20 and m = 50 were generated independently.
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An examination of these operating characteristic curves
show that for the number of years of hydrological data
usually available for a single site and the generally observed
range of values of skew it is unlikely that one can reject, with
a test of moderately high significance the hypothesis that the
site has zero skew. For example, with as many as 50 data
points and a modest 90% test interval for #, if the true skew is
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Fig. 2. Operating characteristic P(}%] < 1,|y = x), 50 data points.
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0.5, the estimator ¥ will fall in the zero skew 90% test interval
about 63% of the time; when that occurs the skew is mistakenly
considered to be zero (i.e., the null hypothesis that the skew is
zero cannot be rejected at the 90% significance level).

It is possible, indeed standard, to combine several data
sets in an attempt to increase the accuracy of the estimate for
the skew. To do this raises the question of which stations to
include; the underlying assumption being that those com-
bined stations have discharges coming from distributions
with the same skew. The consideration of whether or not
that is true brings us back to the probiem of understanding
the variation in sample skews for single stations. The same
problem occurs in making a map of regional skews beginning
from a set of station skews. This is not to say that none of
this should be done but that the problem of the extent of the
variability of site estimates of skew dos not vanish when one
regionalizes the data.

As mentioned above, Appendix 14 of Bulletin 17B, Flood
Flow Frequency Techniques, summarizes research showing
that among the distributions tested, the log Pearson III
distribution and the log normal distribution were the two
best predictors of large floods among the group of distribu-
tions tested and both were approximately equally effective.
Because there is no strong reason to prefer log Pearson 111
over lognormal, and because, as we have seen, in most
situations we cannot distinguish between the two distribu-
tions with convincing significance, the principle of econom-
ical explanation of phenomena should apply. One form of
this principle, called Ockham’s Razor after William of Ock-
ham (c. 1285-1389), is that ‘“Entities are not to be multiplied
beyond necessity,” i.e., between two equally effective ex-
planations choose the simpler. The strongest application of
this principle would be to use zero skew, thereby using a
distribution determined by two parameters rather than three
parameters, unless there is a statistically compelling reason
to adopt a nonzero skew. Whatever the estimated value of
skew used, zero or nonzero, the statistical uncertainty of the
value of the skew should be reflected as an uncertainty in the
calculated T-year flood value.

CONCLUSIONS

The operating characteristic for a statistical test for zero
skew can be computed by simulations. These curves show
that it is usually not possible to reject the hypothesis that the
skew at any single site is zero, for any convincing signifi-
cance level, when using only data from that one station.

Combining or regionalizing data will lead to a more
accurate estimate of skew if one can decide which stations
should be regarded as belonging to the ‘‘region’’; in making
these decisions it will be necessary to consider the statistics
of the variation in estimated skews at each single site.
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