EXPANDING THE CVBEM ANALOG INTO A SERIES
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In the past, the CVBEM (complex variable boundary element method) has been approached as acollocation problem
or by least squares. bnthis work, the CVBEM analog is redeveloped, for the first time, as a series expansion of nodal
point functions with unknown nodal points values as the coetficients. This series expansion provides further insight
into the theoretical and approximation aspects of the CVBEM,
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Introdaoction

The complex variable boundary element method! or CVBEM, has
gained increased use in approximating two-dimensional potential
problems since its inception pearly ten years ago? The CVBEM has
heen extended to inciude collocation techniques, least-squares
minimization, and use of singular approximation functions. Inthisnote,

the CVBEM numerical analog is reformulated inte a new expansion of

nedal point approximation functions such that the several teciiniques
deseribed previously can be unified. With this new formulation, the
CVBEM is now described as a series expansion, developed from the
Cauchy integral.

Formulation

The CVBEM isdeveloped from numerically approximating the Cauchy
contour integral'
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where [ is a simple closed conour enclosing a simply connected
domain €% wiz) is an analytic function en Qs T} § is an integration
variable; i=-1. It is assumed in (1} that T isa polygon with v vertices,
and values of w(%) are given on I such as to provide a well-defined
mixed boundary valpe potential problem,

Contour [ is discretized into 2 boundary elements, F by m nodal
points such that 7 > v, and a node is located at each vertex of ' A
piceewise Hinear spline funciton¥ (L} is defined for each nodej {located

voordinatez, € I by
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wherez, , =z appropriately.
A global trial function, based upon the sum of nodal contributions
is

G(E) =) Ny(Qws (3)
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where G(Z) is a continuous piecewise linear fmetion onl'; @, are nodat
point values of a potential ﬁmctionq;(z ) and its conjugate Wz where
a,=¢,+ iy, (Generally, nodal pointsare located onl” such thatthe given
boundary conditions are matched onI by the global trial functionin{3}.
Higher order slpline functionsmay be used in (3), or an increase in nodai
point density, in order to obtain a match of the known values ofw(z) on

The CVBEM approximator, for linear trial functions (higher order
polynomial splines may be used directly in this developtnent) is
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whfre &(z) is apalytic in € and continuoys onl", Note that 53(2] = -f;(z)
+ ig(z), and V2H(z) = 0, Tz =90,
Series expansion of CVBEM analog

The formulation of (4) is now expanded by substituting (3} into (4) by
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where in{(6), U, =1, approprately.




Rewriting {6),
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Integrating (7), the series expansion is developed by
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where in (9), Mz} follows immediately from (8).

Note that in (8) and (9), the limit of &(z), as pointz € {2 approaches
any nodal coordinatez, e 2 is well defined; this limiting value leads to
thecollocation tf:chmques used in CVBEM! Also, thecomplex legarithm
branch-cut issues are ayoided by the expansion of (8).

The least squares techniques used in the CVBEM *can be seen in
using {3) by first considering the known and the unknown nodal values
given respectively by &f, & Letting§ be a characteristic type function
assuming the values 1 or{, for & being real or imaginary, respectively,
then (9} is written as the series expansion of nadal point functions by
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where () and (fare the complex-valued characieristic type functions
associated with the unknown and known nodat values, respectively;nu
and rk are the number of unknown and known nodat values, respectively;
and nu+ k= 2m.

11 {10}, the §} are known by the boundary conditions of the problem,
and the unknown nodal values,Z 2, are to be estimated by the E "
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From (10}
9(2) = f*(z) = 1*() ab
where £ “(z} is a known function of z, and
FUe) =3 M pérHpls) (12)
Pl

isa function of the nteunknown nodal value estimares {f\e;,:'; p=12,. .1
and the complex variablez Q. Equations (10) through (12) present a
new serics expansion for the CYBEM.

The CVBEM formulation can now be written as a minimization of
a norm

(2} = (w(z) = £5(2)) ) (13)
on the problem boundary, I, with respect 1o the given boundary
condition values. With a match of the boundary conditiens, given orT,
by the selected spline functions andE § values, there is no approximation
error associated with the complex functionf*(z).

Thus, the CVBEM approximation analog is to minimize the error in
fitting, in a least squares sense (or other norm), the difference in
boundary values of / *(z) and {w(z} - £ %2)) on T, where boundary
condition values are given.

Conclusions

The CVBEM analog is, for the first time, redeveloped into a series
expansion ofnodat point functions. From the series expansion, the well-
known collocation and least-squares formulations currently in use, can
be seen to be applications of different norms in minimizing a fitting of
the CVBEM approximation function,f*z}, to the boundary conditions
of the problem.
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