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Abstract

The growing occurrence of computer software piracy has led to a new
area of research, i.e., the development of methods to be used to supply
evidence that soﬂwale wasg copied.

One method to argue that computer source code was copied is to
examine the occurrence of strings of binary code (ones and zeroes) between
the alleged parent and pirate codes. Given the occurrence of a lengthy
identical string between codes, and that string represents a development of
executable code (versus data blocks that can be argued to exist in only one
fashion), a model of the probability of repetition of such a string of code
occurring between so-called independently derived source codes can be
formulated. The developed probabilistic results can also be approximated
by a simpler formula derived herein. A computer program and example
computations are presented. |
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The growing occurrence of computer software piracy has
led to a new area of research, ie., the development of
methods to be used to supply evidence that software was
copied.

One method to argue that computer source code was
copied is to examine the occurence of strings of binary
code {(ones and zeroes} between the alleged parent and
pirate codes. Given the occurrence of a lengthy identical
string between codes, and that string represents a
development of executable code (versus data blocks that
can be argued to exist in only one fashion), a model of the
probability of repetition of such a string of code occurring
between so-called independently derived source codes can
be formulated. The developed probabilistic results can also
be approximated by a simpler formula derived herein. A
computer program and example computations are presented.

INTRODUCTION

The growing occurrence of computer software piracy has
led to a new area of research, ie., the development of
methods to be used to supply evidence that software was
copied. This problem is difficult due to the argument that
the parent software was developed by a knowledgeable
person and hence the resulting code should be a more
probable outcome than another statement of code.
Another argument in defense is that there can only be a
finite number of ways to write a segment of code.
One method to argue code was copied is to examine
the occurrence of strings of binary code (ones and zeroes)
between the alleged parent and pirate codes. Given the
occurrence of a lengthy identical string between codes,
and that string represents a development of executable
code {versus data blocks that can be argued to exist in
only one fashion), a model of the probability of repetition
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of such a string of code occurring between so-called
independently derived source codes can be formulated.
The probabilistic mode]l presented herein assumes
independence and equal probability of the string
occurring within a total source code string size. Although
an argument can be formulated that a string of binary
code is not composed of independent trials of a Bernoulli
random variable (i.e., the ones and zeroes are independent)
due to the structure of the language, this argument can
be accommodated by modeling a string as a set of
independent events rather than independent binary
digits; consequently, a large string may be actually
considered to be a string of independent blocks of binary
code of a finite size, and thus reduce the sample size of
the string and also the size of the total source code.

In this paper, the general model is developed. Extension
of the probabilistic model to handle the cases of binary
code blocks, or different probability weightings is straight
forward from the supplied development,

The specific probabilistic problem is: For a given
probability, how large must the total source code be in
order to experience a specific binary code string? In the
model development, the analog 1s made to a simple fair
colin toss experiment, where heads (H) has the probability
of a specific binary code string. A simpie approximation
formula to the probabilistic model is developed, and a
computer program presented.

PROBABILISTIC MODEL

Consider tossing a fair coin. For a number m let p, denote
the probability that in » tosses there will be at least one
run of heads of length m. To compute this probability is
the same as computing the number H, of different
outcomes of n tosses which contain at least one run of
m heads, since!

" pa=(1/2"4, (1)

It is useful to also consider the set E, of all outcomes of
n tosses in which at least one run of m heads occurs; E,
has H, members. The integer m is regarded as fixed,
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simplifying the notation which would otherwise be, say,
Pu,m and Hn.m'

A recursive formula can be derived by considering the
events in £, , and looking at two cases.

Case 1 is when the event of a run of m heads has already
occured in the first n triais. Letting X; be H or T
depending in the results of the i-th toss, case 1 has the
form X, X,... X, X, where X,X,... X, is an event in
E, and X, is either is H or T, there are 2H, events in
case 1.

Case 2 is the event, disjoint from case 1, in which there
is no run of heads of length m in the first » trials but
there is such a run in n+ 1 trials, For this to occur, the
cvent must have the form

X.X,...X,.,, THHH...H 2)

where the sequence of the last m + 1 outcomes begins
with a T and is followed by m Hs. Also, for the outcome
in equarion (2) to belong to case 2 there cannot be a run
of mheadsintheentries X, X,... X, . ie X X,;... X,_,.
does not belong to E, _,,. Thus, there are

T —H, (3)
different events in case 2.
The set E_,, consists of the disjoint union of case 1

and case 2, s0

Hn+l =2Hn+2“-m - Hn--m {4J

Dividing by 2" ! and using equation (1}

1 - P
Pu+12pn+€"‘2’;+1 (5}
This recursively defines, p, ., ,, beginning with
p;=0,j<mand p,= ;2" {6)

For large m, some ideas of the size of the numbers
involved can be obtained by considering another
recursivety defined sequence. Consider o, defined by

a=p;j=0,1...,2m—1 (7)
Hppy =0, + 1/20H1 (8)
Since
Pam-1 =tm+ 1)/277! 9)
K, =r—m+2)/2"" fornz2m {10)

By construction,
%, 2 p, forall n {11)
Given a value ¢, O < ¢ < I, the value of a such that
A= | {12)
1§

n=c2"" 1y m--2 (13)

So n will have to be at least this large, for n = 2m, to have
ps 2 ¢. For example, suppose you want to take n large
enough so that the probability of 100 consecutive heads
{or a string of size 100) will be .5, the smallest » that will
do will be at least as large as the n for which g, > .5, ie.
n=.5(2""") +98 = 1.27 x 10%°.

It is possible to obtain a very accurate computable
approximate formula for [p, by arguing as follows: with
the change of variable

4. =1-p, {14)

equation (5) becomes the homogeneous difference
equation

Gu+1 =qn_(Qn-w'!2m+ l} (15)

Substituting g, = x" in this equation gives the related
equation

flxy=x"*t —xm 4 12" =0 {16}

The selution g, is a linear combination of n-th powers
of roots of equation (16); for an approximate formuia it
is hoped that for large » the largest root will give the
dominant term.

To approximate the largest root of equation (16), note
that

fiy=1/2mt1 (17

1s quite small for large m and so x5 = 1 wouid be a good
initial guess at this root. Apply Newton's method for a
better guess

xp = xg ~flx}f{xe) =1~ 172771 (18)
This leads to the approximation

Pa=1-(1 17271y (19}

This approximation does not satisfy any of the boundary
conditions of equation (6}, but, as we will see below, the
derived formula (20) is quite accurate.

Given 0 < ¢ < 1, the first value of » for which g, =z ¢ 15

n=In(l —cll(l —1/2"" 22" (—In(l —c)) (20}

For example, for m=100, and ¢=.5 n=1.7 x 10°%;
compare this with the lower bound given above.
The table below gives for ¢ = .1{.1).5 and for n = 4(1)20

{a) The value of the first n for which p, = ¢, computed
from the recursion (10).

(b} The value of n computed from the right hand side
of equation (20).

{c) The lower bound of equation (13).
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m =4
pn = 0.12500000
ph = 0.21679688
on = 0.32421875
ph = 0.41693115
pri = 0.51514530
m =5
pn = Q.1093750C
prn = 0.21021271
pn = 0.3115%9061
pn = 0.41017180
pn = 0.50324029
m = &
pn = 0.10034180
pn = 0.2049715%
pn = 0.3031998%
pn = 0.40420780
pn = 0.5C3015%4
m = 7
pn = 0.10260125
prn = 0.20149082
pn = 0_.30083370
pn = 0.400017321
pn = 0.501449453
m = B
pn = Q.1C158655
pn = Q,20094174
prn = 0.30051364
prn = 0.40091199
pn = 0.50097240
m = <
pn = 0.10006459
pn = 0.200446290
pn = 0.3000B&&1
pn = 0.40044137
pn = 0.500388%4
m = 1¢C
pn = $.10013437
pn = $.20012739
pn = 0.3000885%9
pn = 0.40005301
pn = 0.500172%93
m =z 11
pn = ¢.10014117
pn = 0.20010925%
pn = $.30002588
pn = 0.40007713
pn = 0.50010228
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APPENDIX A, APPLICATION
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46759 approx. n = 46750
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APPENDIX B. SOURCE CODE

Computes the probability p(n] of getting at least one run of heads. of input length m in n trials of a fair coin. The
values of n for which p[n] first exceeds .1(.1).5 are printed. An approximate formula and a simple lower bound for n,
valid for n great than or equal to 2m, are also printed.

uses printer;

var
p:array[0..530] of double;
n:longint;
kl,k2,k3,i,m:integer;
¢,L:double;

begin '

writeln{’input m’};

readlni{m);

writeln(lst,’m = ’,m};

cr=zexpl{-{(m+1)*1n(2));

L:=0.1;

for i:=0 to m-1 do begin
plil:=0;

end; {for}

pim]:=exp(-m*1n(2)};

n:=m;

repeat

kl:=n mod {m+1);
k2:=(n+1) mod {m+l);
k3:={n-m) nmod (m+1);
p(k2]:=plkl]+c*{1-p[k3l1};
if (plk2] >L) then

begin
- writeln{lst,’pn = ',p[k2]:1:8,’ n = ’',n+l1,
K approx. n = ’,round{-1n{l-L)*exp({m+1)*1ln(2})},
? bound =’',trunc{L*exp{{(m+1}*1n{(2)}+m-2));
L:=L+0.1;
and; {if}
n:=n+l;

until {L>0.5);
writeln(lst,'’);
end. {program}
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