A PROBABILISTIC MODEL TO EVALUATE COMPUTER SOFTWARE PIRACY

R.J. Whitley⁽¹⁾ and T.V. Hromadka II⁽²⁾

Abstract

The growing occurrence of computer software piracy has led to a new area of research, i.e., the development of methods to be used to supply evidence that software was copied.

One method to argue that computer source code was copied is to examine the occurrence of strings of binary code (ones and zeroes) between the alleged parent and pirate codes. Given the occurrence of a lengthy identical string between codes, and that string represents a development of executable code (versus data blocks that can be argued to exist in only one fashion), a model of the probability of repetition of such a string of code occurring between so-called independently derived source codes can be formulated. The developed probabilistic results can also be approximated by a simpler formula derived herein. A computer program and example computations are presented.

⁽¹⁾ Professor, Department of Mathematics, University of California, Irvine, CA 92717

⁽²⁾ Associate Professor, Department of Mathematics, California State University, Fullerton, CA 92634

A probabilistic model to evaluate computer software piracy

R. J. WHITLEY

Department of Mathematics, University of California, Irvine, CA 92717, U.S.A.

T. V. HROMADKA II

Department of Mathematics, California State University, Fullerton, CA 92634, U.S.A.

The growing occurrence of computer software piracy has led to a new area of research, i.e., the development of methods to be used to supply evidence that software was copied.

One method to argue that computer source code was copied is to examine the occurence of strings of binary code (ones and zeroes) between the alleged parent and pirate codes. Given the occurrence of a lengthy identical string between codes, and that string represents a development of executable code (versus data blocks that can be argued to exist in only one fashion), a model of the probability of repetition of such a string of code occurring between so-called independently derived source codes can be formulated. The developed probabilistic results can also be approximated by a simpler formula derived herein. A computer program and example computations are presented.

INTRODUCTION

The growing occurrence of computer software piracy has led to a new area of research, i.e., the development of methods to be used to supply evidence that software was copied. This problem is difficult due to the argument that the parent software was developed by a knowledgeable person and hence the resulting code should be a more probable outcome than another statement of code. Another argument in defense is that there can only be a finite number of ways to write a segment of code.

One method to argue code was copied is to examine the occurrence of strings of binary code (ones and zeroes) between the alleged parent and pirate codes. Given the occurrence of a lengthy identical string between codes, and that string represents a development of executable code (versus data blocks that can be argued to exist in only one fashion), a model of the probability of repetition of such a string of code occurring between so-called independently derived source codes can be formulated. The probabilistic model presented herein assumes independence and equal probability of the string occurring within a total source code string size. Although an argument can be formulated that a string of binary code is not composed of independent trials of a Bernoulli random variable (i.e., the ones and zeroes are independent) due to the structure of the language, this argument can be accommodated by modeling a string as a set of independent events rather than independent binary digits; consequently, a large string may be actually considered to be a string of independent blocks of binary code of a finite size, and thus reduce the sample size of the string and also the size of the total source code.

In this paper, the general model is developed. Extension of the probabilistic model to handle the cases of binary code blocks, or different probability weightings is straight forward from the supplied development.

The specific probabilistic problem is: For a given probability, how large must the total source code be in order to experience a specific binary code string? In the model development, the analog is made to a simple fair coin toss experiment, where heads (H) has the probability of a specific binary code string. A simple approximation formula to the probabilistic model is developed, and a computer program presented.

PROBABILISTIC MODEL

Consider tossing a fair coin. For a number m let p_n denote the probability that in n tosses there will be at least one run of heads of length m. To compute this probability is the same as computing the number H_n of different outcomes of n tosses which contain at least one run of m heads, since¹

$$p_n = (1/2^n)H_n \tag{1}$$

It is useful to also consider the set E_n of all outcomes of n tosses in which at least one run of m heads occurs; E_n has H_n members. The integer m is regarded as fixed,

Paper accepted January 1991. Discussion closes January 1992.

simplifying the notation which would otherwise be, say, $p_{n,m}$ and $H_{n,m}$.

A recursive formula can be derived by considering the events in E_{n+1} and looking at two cases.

Case 1 is when the event of a run of m heads has already occured in the first n trials. Letting X_i be H or T depending in the results of the i-th toss, case 1 has the form $X_1X_2...X_nX_{n+1}$ where $X_1X_2...X_n$ is an event in E_n and X_{n+1} is either is H or T, there are $2H_n$ events in case 1.

Case 2 is the event, disjoint from case 1, in which there is no run of heads of length m in the first n trials but there is such a run in n+1 trials. For this to occur, the event must have the form

$$X_1 X_2 \dots X_{n-m} THHH \dots H \tag{2}$$

where the sequence of the last m+1 outcomes begins with a T and is followed by m Hs. Also, for the outcome in equation (2) to belong to case 2 there cannot be a run of m heads in the entries $X_1X_2...X_{n-m}$; i.e. $X_1X_2...X_{n-m}$ does not belong to E_{n-m} . Thus, there are

$$2^{n-m} - H_{n-m} \tag{3}$$

different events in case 2.

The set E_{n+1} consists of the disjoint union of case 1 and case 2, so

$$H_{n+1} = 2H_n + 2^{n-m} - H_{n-m} \tag{4}$$

Dividing by 2^{n+1} and using equation (1)

$$p_{n+1} = p_n + \frac{(1 - p_{n-m})}{2^{m+1}} \tag{5}$$

This recursively defines, p_{n+1} , beginning with

$$p_i = 0, j < m \text{ and } p_m = 1/2^m$$
 (6)

For large m, some ideas of the size of the numbers involved can be obtained by considering another recursively defined sequence. Consider α_n defined by

$$\alpha_i = p_i; j = 0, 1, \dots, 2m - 1$$
 (7)

$$\alpha_{n+1} = \alpha_n + 1/2^{m+1} \tag{8}$$

Since

$$p_{2m-1} = (m+1)/2^{m+1} \tag{9}$$

$$\alpha_n = (n - m + 2)/2^{m+1} \text{ for } n \ge 2m$$
 (10)

By construction,

$$\alpha_n \geqslant p_n \text{ for all } n$$
 (11)

Given a value c, 0 < c < 1, the value of n such that

$$\alpha_n \geqslant c$$
 (12)

is

$$n = c2^{m+1} + m - 2 (13)$$

So n will have to be at least this large, for $n \ge 2m$, to have $p_n \ge c$. For example, suppose you want to take n large enough so that the probability of 100 consecutive heads (or a string of size 100) will be .5; the smallest n that will do will be at least as large as the n for which $q_n \ge .5$, i.e. $n = .5(2^{101}) + 98 = 1.27 \times 10^{30}$.

It is possible to obtain a very accurate computable approximate formula for $[p_n]$ by arguing as follows: with the change of variable

$$q_n = 1 - p_n \tag{14}$$

equation (5) becomes the homogeneous difference equation

$$q_{n+1} = q_n - (q_{n-m}/2^{m+1}) \tag{15}$$

Substituting $q_n = x^n$ in this equation gives the related equation

$$f(x) = x^{m+1} - x^m + 1/2^{m+1} = 0 (16)$$

The solution q_n is a linear combination of *n*-th powers of roots of equation (16); for an approximate formula it is hoped that for large *n* the largest root will give the dominant term.

To approximate the largest root of equation (16), note that

$$f(1) = 1/2^{m+1} \tag{17}$$

is quite small for large m and so $x_0 = 1$ would be a good initial guess at this root. Apply Newton's method for a better guess

$$x_1 = x_0 + f(x_0)/f'(x_0) = 1 - 1/2^{m+1}$$
(18)

This leads to the approximation

$$\hat{p}_n = 1 - (1 - 1/2^{m+1})^n \tag{19}$$

This approximation does not satisfy any of the boundary conditions of equation (6), but, as we will see below, the derived formula (20) is quite accurate.

Given 0 < c < 1, the first value of n for which $\hat{p}_n \ge c$ is

$$n = \ln(1 - c)/\ln(1 - 1/2^{m+1}) \approx 2^{m+1}(-\ln(1 - c))$$
 (20)

For example, for m = 100, and c = .5 $n = 1.7 \times 10^{30}$; compare this with the lower bound given above.

The table below gives for c = .1(.1).5 and for n = 4(1)20

- (a) The value of the first n for which $p_n \ge c$, computed from the recursion (10).
- (b) The value of *n* computed from the right hand side of equation (20).
- (c) The lower bound of equation (13).

REFERENCE

 Helstrom, C. W. Probability and Stochastic Processes for Engineers, MacMillan Publishing Co., 1984

APPENDIX A. APPLICATION

```
m = 4
pn = 0.12500000 n = 6 approx. n = 3

pn = 0.21679688 n = 9 approx. n = 7
                                                                        bound = 5
bound = 8
pn = 0.32421875 n = 13 approx. n = 11
                                                                            bound = 11
pn = 0.41693115 n = 17
                                          approx. n = 16
                                                                          bound ≈ 14
pn = 0.51514530 n = 22 approx. n = 22
                                                                          bound = 17
ភា = 5
pn = 0.10937500 n = 10 approx. n = 7 bound = 9 pn = 0.21021271 n = 17 approx. n = 14 bound = 15 pn = 0.31159061 n = 25 approx. n = 23 bound = 22 pn = 0.41017180 n = 34 approx. n = 33 bound = 28 pn = 0.50324029 n = 44 approx. n = 44 bound = 34
m = 6
pn = 0.30319989 n = 48 approx. n = 46 bound = 42 pn = 0.40420780 n = 67 approx. n = 65 bound = 55 pn = 0.50301594 n = 89 approx. n = 89 bound = 67
                                                                           bound = 42
                                                                            bound = 67
m = 7
pn = 0.10260123 n = 32 approx. n = 27 pn = 0.20149082 n = 61 approx. n = 57 pn = 0.30083370 n = 94 approx. n = 91
                                                                            bound = 30
                                                                            bound = 56
                                                                            bound = 81
pn = 0.50144943 n = 178 approx n = 131
                                                                              bound = 107
                                             approx. n = 177
                                                                               bound = 132
m = 8
pn = 0.10158655 n = 60 approx. n = 54 bound = 57
pn = 0.20094174 n = 119 approx. n = 114 bound = 1
pn = 0.30051364 n = 186 approx. n = 183 bound = 1
pn = 0.40091199 n = 264 approx. n = 262 bound = 2
pn = 0.50097240 n = 356 approx. n = 355 bound = 2
                                                                                bound = 108
                                                                                bound = 159
                                                                                bound = 210
                                                                                bound = 261
m = 9
pn = 0.10006459 n = 114 approx. n = 108 bound = 109 pn = 0.20046290 n = 234 approx. n = 228 bound = 211 pn = 0.30008661 n = 369 approx. n = 365 bound = 314 pn = 0.40044137 n = 526 approx. n = 523 bound = 416 pn = 0.50038894 n = 711 approx. n = 710 bound = 518
                                             approx. n = 710
pn = 0.50038894 n = 711
                                                                                bound = 518
m = .10
pn = 0.10013437 n = 223 approx. n = 216
pn = 0.20012739 n = 463 approx. n = 457
pn = 0.30008859 n = 735 approx. n = 730
                                                                                bound = 212
                                                                                bound = 417
                                                                                bound = 622
pn = 0.40005301 n = 1049 approx. n = 1046
                                                                                 bound = 827
pn = 0.50017293 n = 1421
                                              approx. n = 1420
                                                                                  bound = 1031
m = 11
pn = 0.10014117 n = 440 approx. n = 432 bound = 418
pn = 0.20010925 n = 921 approx. n = 914 bound = 828
pn = 0.30002588 n = 1466 approx. n = 1461 bound = 1237
pn = 0.40007713 n = 2096 approx. n = 2092 bound = 1647
                                                                                 bound = 1647
pn = 0.40007713 n = 2096 approx. n = 2092
                                                                                 bound = 2056
 pn = 0.50010228 n = 2841
                                              approx. n = 2839
```

```
m = 12
                          approx. n = 863
pn = 0.19002148 n = 872
                                              bound = 829
pn = 0.20007727 n = 1836
                           approx. n = 1828
                                                bound = 1648
pn = 0.30004889 n = 2928 approx. n = 2922 pn = 0.40005115 n = 4189 approx. n = 4185
                                                bound = 2467
                                                bound = 3286
pn = 0.50002444 n = 5680
                            approx. n = 5678
                                                bound = 4105
m = 13
pn = 0.10001049 n = 1736
                           approx. n = 1726
                                                 bound = 1649
pn = 0.20000118 n = 3664
                           approx. n = 3656
                                                bound = 3287
pn = 0.30000211 n = 5850
                           approx. n = 5844
approx. n = 8369
                                                bound = 4926
bound = 6564
pn = 0.40001930 n = 8374
pn = 0.50002542 n = 11359
                            approx. n = 11357
                                                  bound = 8202
m = 14
pn = 0.10000197 n = 3463
                            approx. n = 3452
                                                 bound = 3288
pn = 0.20000648 n = 7321
                            approx. n = 7312
                                                 bound = 6565
pn = 0.30001379 n = 11695
                            approx. n = 11688
                                                   bound = 9842
                                                  bound = 13119
pn = 0.40001230 n = 16744
                             approx. n = 16739
                            approx. n = 22713
pn = 0.50000004 n = 22715
                                                  bound = 16395
m = 15
pn = 0.10000995 n = 6917
                           approx. n = 6905
                                                baund = 6566
                           approx. n = 14624
pn = 0.20000637 n = 14634
                                                   bound = 13120
pn = 0.30000511 n = 23383
                                                   bound = 19673
                            approx. n = 23375
pn = 0.40000411 n = 33483
                            approx. n = 33477
                                                  bound = 26227
pn = 0.50000496 n = 45429
                            approx. n = 45426
                                                   bound = 32780
m = 16
pn = 0.10000635 n = 13823 approx. n = 13810
                                                   bound = 13121
pn = 0.20000494 n = 29259
                             approx. n = 29248
                                                   bound = 26228
pn = 0.30000420 n = 46759 -
                             approx. n = 46750
                                                  bound = 39335
pn = 0.40000225 n = 66961
                                                   bound = 52442
                             approx. n = 66955
pn = 0.50000095 n = 90855
                                                  bound = 65549
                             approx. n = 90852
m = 17
pn = 0.10000074 n = 27633
                                                  bound = 26229
                            approx. n = 27620
                             approx. n = 58496
pn = 0.20000049 n = 58507
                                                  bound = 52443
                                                  bound = 78658
pn = 0.30000012 n = 93509
                             approx. n = 93500
pn = 0.40000015 n = 133916
                             approx. n = 133910
                                                    bound = 104872
pn = 0.50000144 n = 181708
                             approx. n = 181704
                                                     bound = 131086
pn = 0.10000119 n = 55254
                             approx. n = 55239
                                                  bound = 52444
pn = 0.20000098 n = 117004
                             approx. n = 116991
                                                     bound = 104873
pn = 0.30000027 \ n = 187010
                             approx. n ≥ 187000
                                                    bound = 157302
pn = 0.40000081 \ n = 267827
                             approx. n = 267820
                                                    bound = 209731
pn = 0.30000007 n = 363412
                              approx. n = 363409
                                                    bound = 262159
m = 19
pn = 0.10000047 n = 110494
                           approx. n = 110479
approx. n = 233983
approx. n = 374001
approx. n = 535639
                                                    bound = 104874
                              approx. n = 110479
                                                    bound = 209732
pn = 0.20000029 \ n = 233996
                                                    bound = 314589
pn = 0.30000011 n = 374011
                                                    bound = 419447
pn = 0.40000027 n = 535647
                                                     bound = 524304
pn = 0.50000001 n = 726821
                              approx. n = 726817
m = 20
                                                    bound = 209733
                              approx. n = 220957
pn = 0.10000006 n = 220973
                                                    bound = 419448
                             approx. n = 467966
approx. n = 748002
pn = 0.20000024 n = 467980
                                                    bound = 629163
pn = 0.30000025 n = 748013
                                                    bound = 938878
pn = 0.40000014 n = 1071287
                              approx. n = 1071279
                                                     bound = 1048593
                              approx. n = 1453635
pn = 0.50000005 n = 1453639
```

APPENDIX B. SOURCE CODE

Computes the probability p[n] of getting at least one run of heads of input length m in n trials of a fair coin. The values of n for which p[n] first exceeds .1(.1).5 are printed. An approximate formula and a simple lower bound for n, valid for n great than or equal to 2m, are also printed.

```
uses printer;
var
    p:array[0..50] of double;
    n:longint;
    k1, k2, k3, i, m; integer;
    c,L:double;
begin
writeln('input m');
readln(m);
writeln(lst,'m = ',m);
c:=\exp(-(m+1)*ln(2));
L:=0.1;
for i:=0 to m-1 do begin
    p[i]:=0;
end; {for}
p[m]:=exp(-m*ln(2));
n:=m;
repeat
    k1:=n mod (m+1);
    k2:=(n+1) \mod (m+1);
    k3 := (n-m) \mod (m+1);
    p[k2]:=p[k1]+c*(1-p[k3]);
     if (p[k2] > L) then
        begin
       bound =', trunc(L*exp((m+1)*ln(2))+m-2));
        L:=L+0.1;
     end;{if}
     n:=n+1;
until (L>0.5);
writeln(lst,'');
end. {program}
```