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Abstract

In any rainfall-runoff model, there is uncertainty associated 1o predictions of ranoff. The stechastic
integral equation method is used in this paper to represent the history of the rainfall-runoff modeling
error as a convolution of model input (effective rainfall in this paper) with a frequency-distribution of
transfer function realizations. In prediction, the expected runoff estimate is quantified by use of a
distribution of runoff error estimates, cach estimaie of eror based upon a previous experience using
the subject rainfall-runoff model, Although this paper focuses upon a simple unit-hydrograph rainfalj.
runoff model, the principles discussed apply, in generality, to other rainfall-runoff model structures.

1. INTRODUCTION

Almost all rainfall-runoff models in use today produce a
single estimate of runoff for a single storm event
(Hromadka et al, 1987). This runoff estimate is then used
for design or decision-making purposes, and the level of
accuracy achieved in the decision-making process depemds
upon the accuracy of the runoff prediction. Because oaly &
single estimate of runoff is produced by the rainfall-runoff
model judgments regarding accuracy in the decision-making
cannot be adequately made.

In this paper, a simple quasi-lincar rainfall-ranoff
model is studied with the objective of developing a
stochastic runoff modeling error relationship. This error
relationship can then be used to quantify the modeling error
associated to the subject rainfall-runoff model when applied
t0 a design or hypothetical storm rainfall event.

The modeling error relationship is developed by use of

61

a stochastic integral representation of the error between
model- runoff and the catchment’s measured runoff
{Hromadka and Whitley, 1989). Given several storm
events, several error realizations result that are then used in
a convolution integral setting, producing realizations of the
transfer function needed in the stochastic integral
(Hromadka and Whitley, 1988).

The cawchment rainfall-ranoff data used are pairs of
associated realizations of "measured” rainfail and runoff,
produced by a synthetic physically-based rainfall-runoff
model of a hypothetical caichment. Consequently, there is
no "measurement error” in the rainfall-ranoff synthetic data
used in this study. The rainfall information are realizations
of synthetically generated rainfalls that are "measured” at a
single rain gauge located near the hypothetical catchment.
The storm rainfalls are stochastic events with random areal
extent, shape, storm patterns, duration, intensities, speed,
direction, and approach. The physicaily-based rainfall-
runoff model (discussed in a later section) utilizes a Horton
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loss function with recoverable initial loss rates, diffusion-
based topographic and open channel routing algorithms,
and regional non-homogeneity in subarea loss rate
parameters. Becawse the rainfall and runoff data and runoff
characteristics are known precisely throughout the
caichment, and with respect to the rain gauge, there are no
unknown hydrologic processes that can contribute to the
modeling error. Thus, the modeling error relationship
derived herein focuses upon the discrepancies between
model input (rainfall) and output (runoff).

After developing the modeling error relationship
associated with the subject quasi-linear rainfail-runoff
model, the uncertainty in runoff predictions can be
evaluated by coupling the developed error relationship to
the estimated single realization of runoff from the calibraied
rainfall-runoff model.

II. THE RAINFALL-RUNOFF MODEL

The subject rainfall-runoff model being considered is a
single area unit-hydrograph (UH) model. The UH
modeling approach continues to be one of the most widely
used rainfall-runoff modeling technigues. The methods
used in this paper apply o other rainfall-runoff models.
An average (UH) is calibrated from the rainfall-runoff data
and is the average of all reconstitutions, The loss rate
function used is the phi-index scheme (Hromadka et al,
1987), and is also calibrated from the data. The mode] is
described for storm event i by

L
Mt (t)=I elt-s) Pi(s)ds
s=0 (L

where e}{(s) is the estimated storm event i catchment area-
averaged effective rainfall; () is the associated unit
hydrograph; and M(2) is the model estimate of runoff for
storm eventi. In (1),

ei(s) = max [(Pi(s) - ¢%), 0] @

where Pi(») is the event i precipitation record “measured” at
the rain gauge, and ¢! is a constant phi-index. In (1), the
rainfall-runoff model is appiied to and calibrated from n
storm events that are considered significant runoffs.

In the application of Eqgs. (1) and (2) for model
calibration, & phi-index value of ¢! is determined for each
storm event i such that the volume of effective rainfall
equals the volume of mnoff, For n storm events, the
calibrated phi-index, ¢, is the sampie mean

n .
o) =1 ¢
i=1 3

The calibrated UH, W¢(s), is the pointwise average of

n storm event unit hydrographs, 4i(s), i=1,2.....n, whese
for each storm event i, Y'(s) is determined by equating
model estimated runoff, MY(1), to measured runoff, Q).
(Existence of the J'(s) is assured when effective rainfall
initiates at or before measured runoff.) Thus, yic(s) is
determined by the mean of realizations

1]
vels) =L 3" di(s), 520
i=1 @)

The model error for storm event i, Ei(-}, is

El(1) = Qi(1) - Mcl() )

where the calibrated model estimate of ninoff for event i,
Mcl(=), is .

t
M}:(t) = J eic(t-s) Ye(s) ds
s=0) - 6

and ec(t) = max [(PL(t) - ¢c), O].

The model error is assumed to be correlated to the
calibrated carchment-averaged effective rainfall estimate,

ecl{(+), and is equated to the convolution

t
Ei() =j el(t-s) ni(s) ds
=0 M

resulting in n realizations, n1(+); i=12,....n, for the
considered n storm events. Other choices for equating
model error via convolution is the calibrated model
estimate itself, Mc}(=); the storm measured rainfails, Pi();
among others. In this paper, the calibrated-averaged
effective rainfall is used to develop estimates of runoff
modeling error due to the resuiting simplifications in the

mathematical model; specifically,

i
Qi(t) = Mi + Ei(r) =j el(t-) yi(s) ds
=0 ®

where
Wi(s) = Ye(s) +Mi(s) o

The distribution of realizations [y/(-)}, is approximated by
the set of equally likely realizations, (yi(s); i=1,2,....n}.

In prediction, the rainfall-runoff model estimate is the
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distribution of outcomes, {MP(+)], for storm event "D",
where

L
MP()] =I e2(t-s) [y(s)] ds
s=0 (10)

or in approximation,

1
[MD(l)] = { eCD(l-s) wi(s) ds; i=1,2,..n
s=0 an

where as before,
ecP(1) = max (PPQ) - c), 0} (12)
and PD(1) is the rain gauge rainfalls for event "D",

In the above analysis, no constraints {other than
requiring effective rainfalls to exist at or prior to beginning
of runoff} are introduced in the development of the various
convolution transfer functions. Consequently, both
positive and negative values of transfer functions generally
result. If it is desired to eliminate negative values of
runoff, a filter on the [MP(+)] realizations may be used that
simply restricts all [MY{s)] realization values to be
positive, or otherwise zero, or an interval mean value used
defined on the time interval (t-8, 1+8). The distribution,
MD(+)), as filiered, is hereafter denoted by MP(e)] *.

If we are interested in the value of a criterion variabie,
such as peak flow rate, maximum channel flow depth,
average flow velocity during the peak one-hour of flow, or
other, a distribution {AD]* of values is developed by

[AD)* = AMD(a))* (13

where {AP)* is the distribution of filtered valses of the
criterion variable for hypothetical storm event "D"; 4 is
notation for operating upon each realization (distributed as
[MD(+)1*) in determining the value of the subject criterion
variabie for each realization of runoff.

In the subsequent sections of this paper, the above
procedures are applied towards developing the various
distributions of stochastic processes involved, and
estimates of distributions are developed for several criterion
variables of typical concern.

OI. SYNTHETIC RAINFALL-RUNOFF DATA
GENERATION

In order to have a large sample of rainfall-rancff realization
5ets, a stochastic storm model is used to develop synthetic
realization sets of storm rainfall. Storm rainfalis are
synthetically generated that are random in areal extent,

shape, duration, intensities, velocity, direction, and
approach to the test catchment.

Rainfall depths were randomly sampled using
probability distributions that are representive of Los
Angeles regional rainfall data for the Pacific coastal area.
As the synthetic storm rainfalls occur, a single rain gauge
(see Fig. 1) "measures” rainfall quantitics as they are
defined in the vicinity of the rain gauge.

The synthetic catchment model represents a 38 square
mile area with the use of a coupled topographic routing
model and a channel routing model. The zero inertia {or
diffusion) flow routing (Hromadka and Yen, 1987) is used
for hydraulic modeling purposes. The topographic model
utilizes inierconnected grids, each with its own Horton loss
function parameters, slope, time-of-concentration, and
drainage connection to the channel system. The
interconnected channel system network serves to drain the
topographic model by use of various channel reach sizes
and friction factors. The overall synthetic runoff model
represeris hydraulic and loss rate characteristics that are
typically found in fully urbanized planned-community areas
that have open space, office, schooling, and residential
areas, The channel system drains to the catchment stream
gauge (see Fig. 1).

The synthetic storm rainfall event is modeled by time-
stepping, at one-minute intervais, the storm event over the
subject catchment pursuant to the various samplings of
storm speed, size, areal extent, and other factors. Synthetic
runoff is then generated according to the storm rainfall
incremental one-minute depths. For each storm event, i, a
synthetic rainfall realization and an associated synthetic
runoff realization is developed, which is to be subsequently
used as the "measured" rainfall-runoff data in calibrating the
previously discussed UH model of Egs. (1) and (6).

IV. COMPUTATION OF TRANSFER FUNCTIONS,
¥ie)

In Hromadka and Whitley (1988), the UH model wansfer
function for storm event i, Yi{+), is shown to represent the
sampling of mutually dependert random variables and

random processes by

m
i Pp. . P P
Vi) =, Y s 2 [hk) ¢ (s - [Bjl-ofes)
j=1 <€> k
(14)
where
Wi(s), is the realization for storm event i;
$ = time;
«<{>, is an index sequence of channel segments;

<£>j, is the channel segment sequence between
subarea j and the stream gauge (Fig. 1);

Ac g , are convelution coefficients representing
channel routing;
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P, is a storm class, and introduces nonlinearity effects;

[Ax), are random effective rainfall convolution
cocfficients in relating subarea effective
rainfalls o measured data with respect to the
rain gauge;

(s} is the subarea ) transfer function;

I8y}, are random timing offsets used in effective
rainfall convolutions; -

m ig the nurber of subareas in the link-node model;
G.¢» - are channel routing convolution timing offsats.

In the cited reference, the UH model is used to represent a
wide vanety of catchment regponse characteristics. Even
though the various random processes and distributions are
unknown (given data from only a single rain gauge and
stream gauge), the mutual dependency between the random
variables and processes are properly represented in the
single random realization of yi(+) for each storm event, i,
As shown in Hromadka and Whitley (1988), it is incorrect
to simply assign plausible distributions for the several
random components in Eq, (1]) and assume the
distributions 1o be mutually independent (for example, the
assumption of independence typically leads to concluding
that a decrease occurs in the variance of the distribution
[AP} as the number of mode! random components,
generally associated to the number of subareas "m",
increases). Each storm event has an associated vector of
samplings for each random component of Eq. (14), and that
vector is properly represented by the single realization
Wi,

~ For each siorm event, Wsi(+) is developed via solving
for the inverse convolution as described by Egs. (7} - (9).
Some of the Wl(=) realizations obtained by use of the
synthetic rainfail-runoff data are plotted in Fig, 2.

The distribution [W'(+)] can be normalized in S-graph
form (i.e., summed mass; or cumulative distribution) by
use of calchment lag as shown in Fig. 3.

V. RUNOFF PREDICTION MODEL

For hypothetical storm event "D", the runoff prediction is
probabilistically modeled as the cnsemble of runoff
hydrograph realizations distributed as [QP(+)) approximated
by

[QPE)] = (MPE); k=1.2.....n} (15)

where n is the number of storm events available in the data
set (in this paper, n=50); and ag before,

{
ME(t) = j eD(t-s) y¥(s) ds
s=0 (16)

The MyD() realizations may be filtered to remave negative
values, or some other smoothing method applied.

For a selected criterion variable, A, (such as peak flow
rate, or detention basin maximum volume anticipated, and
so fortlt}, the prediction is probabilisticaily approximated
by the frequency distribution, [AD),

[AD] = (aMD(e)); k=1,2....:0) (17

In Eq. (17), a parent probability distribution function (pdf)

may be apparent, and can be used in estimating confidence
intervals,

It is noted that the various distributions used in Eq.
(14) may be dependent upon the severity of storms and that
the use of storm classes (e.g., severe, major, mild, minor)
may be appropriate. The use of storm classes (Hromadka
and Whitley, 1988) inwoduces a source of nonlinearity in
the rainfall-runoff model of Eq. {10) in that the diswribution
[y(+)] is conditioned upon the realization of effective
rainfall. The cited reference found that storm classes can be
developed according to values of specified peak durationat
effective rainfalls such as (1-hour, 3-hour, 6-hour) values
among other choices. Storm classes, however, are not used
in this smdy.

V1. REGIONALIZATION OF THE DISTRIBUTION
W)l

Two other synthetic catchments were analyzed for the
deveiopment of other synthetic distributions of transfer
functions, [yA(+)). When normalized in S-graph form, the
three distributions showed form and shape similarities,
(Although each of the three hypothetical catchments was
subjected to a sequence of 50 storm events, the storm
sequences differed between catchments in that each
catchment was subjected to a continuation of the random
rainfall event generator rather than a repetition or
rearrangement of the 50 storm events.)

Figure 4 depicts a weighted S-graph representation of
the three separate catchment results in developing
distributions [Wl(*)]. The 8 weighted realizations are
developed as a simple population mean weighted among
similar S-graphs, cach S-graph shown being the computed
average of a particular grouping of S-graphs. [t is recalled
that Fig. 4 represents the ensemble of S-graphs developed
from three catchments,

In Fig. 4, the S-graph distribution is normalized with
respect 10 the expected S-graph, i.e., the calibrated UH.
The S-graph weighted realizations are plotted in units of
percentage of expected lag.

The discretized regional distribution for [\/'(=)], shown
in Fig. 4, may be assumed to apply at other catchments,
for the subject rainfall-runoff model of Eq. (10). Should an
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estimate for expected lag be available, such as obtained
from commonly used generalized regression equations {e.g.
McCuen and Snyder, 1986), the [y/i(s)] distribution may be
estimated by scaling the frequency-distribution of Fig. 4.
It is noted that the distribution, [\!(+)], lacks the full
breadth of realizations needed for sampling rare events.
However, use of [W'(+)] in evaluating a runoff criterion
variable aids in identifying an underlying distribution of the
criterion variable, [ADY. | |

VI APPLICATION OF THE REGIONAL
DISTRIBUTION, {w(*)j, IN EVALUATING
UNCERTAINTY IN RUNOFF ESTIMATES

The application of Eqs. (10) and (11) in estimating
distributions for noff criterion variabies, by Eqg. (13) and
(17}, is considered below. In each example application, the
rainfall-runoff model previously calibrated is appiied 1 a
catchment not included in the calibration set (i.e., the three
synthetic catchments used to develop (Wi(-)l. The study
catchment has an area of 3000 acres, an expected lag of 1.0
hours, and an expected phi-index of f = 0.4 inch/hour. The
hypothetical rainfall event, PP(), is shown in Fig. 5.

Peak Flowrate Estimate

The criterion variable of peak flow rate is estimated for

event PD(), by the distribution
[Qpl = APy (18)
where 2 is the operator that, for sample MX(e) & (MD(e)]*,
AMK(e)) = max MK() (19)
20

Table 1 provides the weighted peak flow raie estimates
computed by use of the 8 weighted realizations in Fig. 4.
A frequency-distribution of peak flowrate estimates, using
the previously developed synthetic Dyl(=)], is shown in
Fig. 6. Superimposed in Fig. 6 is a normal distribution
n(ji, 8), where {1 and & are the estimated sample mean and

TABLE 1. PEAK FLOW RATE ESTIMATE

Realization
(see Fig. 4) Weighting Peak Flow (cfs)
1 10 3094
2 20 2485
3 15 1630
4 10 1664
S 10 2423
6 20 2m
7 10 1782
8 5 1847

-1 4

fix) /
asf )

)

Op {ete)

Fig. 6. Frequency Distribution of {Qp).

standard deviation values weighted according to the
frequency-distribution weightings of [Wi(-)]. (The normal
distribution is shown for illustration purposes only, and is
not intended to suggest that {Qp] is normally distributed.)

There are many unsteady flow routing models reported in
the literature (e.g., McCuen, 1989). One commonly used
hydrologic routing model is the Convex method (McCuen,
1989). In this application, the change in peak flow rate
AQp, due 1o the channel storage effects as predicted by the
Convex routing method is of interest. A Convex
coefficient of C = 0.75 is used in the application, for a
channel of two-mile length,

For each weighted realization shown in Fig, 4, a
runoff hydrograph is developed for the considered design
storm, PY(1), resulting in 8 weighted runoff runoff
hydrographs, {MX(p), k=1,2,....8}. Each MK(t) is then
routed by the Convex method, and AQp noted. Table 2
summarizes the results. Figure 7 depicts a frequency-
distribution of AQp, for the compuAled information, and a
normal distribution using estimates |1 and & is also shown.
In this application, (A1 = [AQpP], where superscript D

TABLE 2. AQp ESTIMATE DUE TO

CONVEX CHANNEL ROUTING

Realization

(see Fig. 4) Weighting aQp
1 10 55
2 20 120
3 15 56
4 10 103
5 10 387
6 20 152
17 10 86
8 5 61
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Fig. 7. Frequency Distribution of [AQp] due 10 Convey
Channel Rouyting.

refers 1o the hypothetical or design storm event of Fig, §.
With respect 1o the A operator of Eq. (13), .4is the process
of identifying the AQp associated 10 a sampled transfer
function from the distribution {y*(:)1.

The estimate of maximum runoff volume needed to be
scored in a detention basin is a critical design parameter.
Using the Fig. 4 information, the estimate of basin
volume demand can be developed.

The subject detention basin has a single pipe outlet
with no downstream hydraylic backwater effects. Using a
modified Puls storage routing calculation, the weighted
maximum basin volume demands are provided in Tabfe 3.
As in the previous examples, the frequency-distribution for
basin maximem volume and & normal adfi, 3) distribution
is shown in Fig, 8.

. ( Mean Flow Velocity for Maxi Ope-H
Duration of Runoff

In sedimentation anatysis, 2 mean flow velocity, usually
apove some threshold valae, is of imerest. In this

wh NORMAL YT STATHITRR
) -
' x) Jmmas

@ o o "

SLAXIAMIA YOLUME DEMAND: (AF}

Fig. 8. Frequency Distribution of Maximum Volume
Demand.

application, the variation in mean flow velocity estimates
corresponding to the maximum one-hour duration of flow
is computed. An economical channe] section composed of
sandy material is considered. A Manning's friction factor
of n = 035 is assumed for the channel. Table 4 and Figure
9 depict the computed information.

TABLE 4. MEAN FLOW VELOCITY FOR
MAXTMUM ONE-HOUR
ONE-HOUR DURATION OF RUNOFF

TABLE 3. ESTIMATE OF MAXIMUM

YOLUME DEMAND

Realization Maximum
(see Fig, 4) Weighting Volume (AF)

1 10 123

2 20 87

3 15 20

4 10 2

5 10 34

6 20 117

7 10 32

8 5 47

Realization Weighting  Mean Velocity (fps)
1 1Q 53
2 20 5.1
3 15 46
4 10 45
5 10 46
6 20 52
7 j{¢] 4.6
8 5 4.8
MO AT STATRTICE:
f PTTS
ay ' G003
1{x)
a8}
MEAN RLOW YELOCITY (fpa}

Fig. 9. Frequency Distribution of Mean Flow Velocity
for Maximum One-hour Duration of Runoff.



72 T. V. Hromadka, R J Whitley, R H. McCuen, C. C. Yen

VIIL. DISCUSSION OF RESULTS AND
CONCLUSIONS

in any rainfall-runoff model, there is uncertainty associated
to predictions of runoff. The stochastic integrai equation
represents a history of modeting error as a convolution of
model input (effective rainfall in this paper) with a
frequency-distribution of transfer. function realizations. In
prediction, the expected runoff estimate is qualified by a
distribution of runoff error estimates, each estimate of efmor
based upon a previous experience using the subject rainfall-
runoff model.

For a selected criterion variable (such as peak flow
rate, detention basin velume, ¢tc.), the prediction is not a
single value but instead is a frequency-distribution of
values that may be used to estimate confidence intervals for
safety in design and planning. For example, one may
select to be 85-percent confident in a design value for
sizing storage in a detention basgin as associated 1o a
prescribed design storm eveat, PDG).

As with any statistical estimation procedure, accuracy
hinges upon the quantity and quality of the data used in the
synthesis. Consequentlty, with rainfall-runoff data in short
supply, one may elect to supplement the available data by
~use of a stochastic rainfall-runoff synthetic runoff
information generator such as ¢mployed in this paper. Itis
recalled that considerable data are necessary when
altempting to estimate the high confidence interval
estimates (&.g., 93%).

Although this paper focuses upon a simple unn-
hydrograph (UH) rainfall-runoff model, the principles
discussed apply to any rainfall-runcff model strucwre in
generality (see Hromadka and Whitley, 1989). The UH
method is particularly ractable to use of the stochastic
integral formulation due 10 the summation of the transfer

function distribution to the expected UH, resulting in a
single stochastic integral equation.

Many questions arise when developing distributions
for the various criterion variables of usual interest, For
example, what is the underlying distribution for peak flow
rate estimates; or for peak one-howr durational flow mean
velocity; or for detention basin maximum volume demand?
How much data is needed o adequately define the
underlying distribution parameters? What confidence level
should be used for design purposes? These questions,
among others, require further research and a considerable
coliection of environmental data.
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