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ABSTRACT

The current technology of computer modeling groundwater contaminant
transport invelves widespread use of demain-diseretized methods such
as finite element and finite differences, Nodal Domein Integration or
Control Volume methods are also used freguently due to the continuity
of mass transport relationships. In this paper, some of the dominant
underpinnings of these domain-diseretized technigues are reviewed, and
8 uniformity between modeling techniques is presented. Beeause g
prineipal variation between the numerical teehniques is the capacitance
matrix, the focal point in the comparison will address this term in the
numerical analog,

INTRODUCTION

This paper introduces the reader to numerieal modeling techniques that
can be gpplied to the hydraulic anslysis of groundwater flow and, by
extension, groundwater contaminant transport. Numerical modeling
techniques applied to mathematical models of groundwater flow imply
the use of modern digital computers, which are now widely used for
many engineering and scientific applieations, Improvement in
numerical technigues and computers now make it possible to solve
rather eomplicated perous media flow problems on miniclass or even
microclass computers,

Numerical medels of regional groundwater flow have been widely
used for a number of years to aid in aquifer management. Reviews of
the basis and the use of sueh moedels ¢an be found in Freeze and
Cherry*, Remson et al,- %, Pinder and Grayu, and Bearl. Usually these
models are two-dimensional models of the zone of saturation where the
coordinates are criented in the horizontal plane, The vartical direction
is regarded as an integrated avergge where vertical veloeity
components are assumed to zero. Both the finite-element and finite-
difference approaches are used as numerical analogs of the governing
two-dimensional, dynamic equation of state. In several special cases,
three-dimensional models have been advaneed, and medels that inelude
the unsaturated zone have been developed.  Contaminent transport
submodels are overlayed upon the groundwater flow modeling results,
using flow veloeity estimetes and estimate of soil water saturation.

Obtaining and applying a model that is already developed is
sometimes difficult for several reasons. The most often encountered
diffieuity is that after a model Is developed, verified, and applied there
are inadeguete resources for maintaining the model and servieing it.
All modern software that is widely used requires a eentral enterprise
for maintaining the software, usually the vendor. Second, numerieal
groundwater models, although elegantly constructed to solve the
preblem they are designed for, are oftentimes not truly user-oriented.
Finally, another troublesome problem that may arise in adapting a
model to g new envirenment is that sometimes models may be maching
dependent, It is sometimes an unsurmountable task to adapt & model to
a different computer from the one it was develeped on. As a
econsequence, it may be more practical in some eases to start from
seratch and build a new numerical model,

Notwithstanding these problems, numerieal modeling, when
combined with appropriate geotechnical exploration and hydrologic
analyses, is a powerful tool. The use of existing numerical models or
the development of a new model require some understanding of not only
the physical and chemical processes involved in contaminant transport
and groundwater movement but alse of the basiec mathematical
prineiples needed to develop a numerical analog. This paper is designed
to, in part, meet this need. Only a very limited treatment of numerical
techniques is given here; the reader should consult the several
referenced texts for additional information},%,11,12,

THE MATHEMATICAL PROBLEM

Both saturated and unsaturzted flow processes must be evaluated to
reelistically model the hydraulic behavior of groundwater flow and
contaminant transport. Similarly, introduction of contaminants into
unconfined aquifers should include an analysis of unsaturated ilow
phenomena. Because this paper focuses upon the numericel modeling
aspeets, the groundwater flow component is examined for simplieity.

Consider the most complicated case first. To make the
mathematical statement as simply as possible, we will assume a
homogeneous nondeformable porous medium but will allow hydraulie
conduetivity to vary directionally {i.e., an anisotropic medium), We will
not include & consideration of air flow; we will deal only with water
flow. Continuity for & differential eontrol volume may be expressed in
Cartesien coordinates as
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where x, y, and z are Cartesian coordinates; t is time; vy, Yy, and vy
are velocity fluxes in thelr respective directions; and @ is the
volumetric moisture content. For simplicity, fluid sources and sinks are
not included, BParey's law is
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where Ky, Ky, end Ky are the principal direction hydraulic conductivity
coeflicients and ¢ is the tota) hydraulie head where

p=u+h {3)

whave ¢ is the pore water pressure head and h is the elevation head. If
z i3 oriented vertizally upward, {h = 2, Equations {2) and {3) only apply
to porous media flow where inertial forces are negligible (i.e., a
Tieynolds' number less than 3). Substituting, Equation {2) inte Eguation
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To solve Equation {4), there must be a known relationship between
2 and v, We have two opiions: we can veplace Ea? with
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or replace ¢ on the left side with a funetion of &, yielding the diffusion
foren of the equation. From & numerical standpoint jt is usually better
to modily the right-hand side of Equation {4), and leave Equation {4}
with total head as the state variable, Equation (5) may exist, provided
there is Unigue single-valued function 6*, which is given by

g* = (&)
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The condition (y<0) represents unsaturated flow, and the condition
{4z 0) represents saturated flow. For unsaturated flow, we must know
the functional form {8 = 6(p), the so-called s0il molsture
characteristies that must be determined in the leboratory using sofl
samples or must be inferred from data, such as that published by
Goymon et a8,

Furthermore, when (<), the bydraulic conductivity is a funetion
of water content or pore water pressure; Le,, (K = K{{)) and this
function must be determined by laboratory analysis of soil samples or
inferredd. For unsaturated flow, Equation {4) is nenlinear since the
hydraulic conductivity coefficients are functions of pore pressure head,
As long as the temperal term exists, Equation (4) is a parabolic
equation.

To solve Equation (4), we must have boundery and initial
conditions, Genevally, these ara of the form :

Boundary ¢ = $ls} y >0
Conditions "
— = ayle)/K, b >0 @
Initial
Condition "¢ = ¢glxay) 2 >0

where 5 is a coordinate tangential te the solution domain surface, nis e
normel coordinate to this surface, and qufs) is & flux condition that may
be negative, zero, or positive. The first boundary condition represents
& specified hydraulic head along the boundary. Since it is permissible
for this boundary condition to vary with distance along the boundary, it
may be a function of distance, s, Also, the boundery condition may
vary in time in a step function manner. The second boundary condition
deals with g flux condition normal to the boundery surface. Oftentimes
the hydrologist tries to locate a boundary so that the flux is zere. 1f,
unfortunately, & flux condition does exist, estimates of flux normel 10
the boundary must be made by employing Darey's law. This condition
mey vary as a function of distence elong the boundary and may vary in
time in some prescribed manner. Finally, it is usually the case that we
have mixed boundary condition problems. A purtion of a boundary mey
have a preseribed head while other portions may have a preseribed flux
eondition.



wost applications to groundwater flow and contaminant transport
problems involve fwo-dimensional solutions. If we assume flow in the z
direction is zero, y is vertieally up and x is tangential to the earth's
surface (horizontal), Eguation {4) becomes
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which for unsaturated flow is a nonlinear parabiolie partial differential
equation, The total hydrovlic head is new (¢ = v + y). Equations (5,
{6), and (7} are required to solve Equation (8). For saturated flow, ie.,
the entire solution domain is saturated, Equation (8} becomes elliptic.
The right side of Equation {8} is identically zere, When the aquifer is
homogeneous and isetropie, {Kx = Ky and K # f{x,y)], it yields the well-
known Laplace equation, which is independent of aquifer parameters;
=

Ve =0 )]
Only boundary conditions determine the solution of Equation {9).

If we again assume flow in the z direction is zero, but orient bath
the x and y coordinates in a plane tangential to the earth's surface,
Equation (8} is correet for purely unsaturated flow; however,
representing tefnporal variations for fully saturated flow, the right side
Is not zero but becemes a function of total hydraulic head and storage
properties of the porous media:
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where H is the tota) saturated thiekness {uncenfined aquifer) or is equal
te ¢ (confined aquifer), & is a storape caefficient, and Ty and Ty are the
transmissibility coefficients that depend on II in the unconfired case.
The sterage coefficient is substantially different in the physical process
it represents and in magnitude, depending on whether a confined aguifer
or free water surface {unconfined) aquifer is being studied. We assume
fluid velocity in the z direction {s zero, This assumption {the Dupuit
assumption} is reasonably true in fully confined aguifer problems snd is
only a rough approximation in unconfined aguifer problems. Again,
Equation {10} is a nonlinear patabolie equetien that requires boundary
and initial conditions of the form of Equation (7} to solve for the state
variable ¢,

Ta this point, we have been using Cartesian coordinates to iay the
framework for a mathematical model. Other forms of eoordinates are
useful also. For modeling direct introduction of contaminant, sueh as
by injection, into a confined aguifer, cylindrical coordinates are the
best to work with, If we assume (K = Ky = Ky}, Equation {10) becomes
the lncar one-dimensional equation {for the "case of a homogeaeous,
isotropie, confined aquifer):
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where r i3 the radial coordingte from the weil We are assuming that
velocities in thelr vertical direction are zero and that there is no
movernent of water in a cireular direction arcund the well; i.e., water
moves outwerd from the contaminant source along radial lines that look
like the spokes of a wheel. To solve Equation (11), suitable boundary
and initial conditions are required. One of the boundary eonditions is at
the well perimeter, where recharge rate or hydraulic head may be
specified,

Now that we have developed several forms of equations describing
porous media flow, we can conceptually consider the nature of the
problem, Our approach has been to use physics-based laws or
principles, and thus we have developed deterministic equations. That
is, we have not considered probabilistic processes although by nature,
porous media and soils are basically discrete. Freezev has questioned
our usuel deterministic view of porous media flow. There is a wide
statistieal wvariation in the fileld parameters {e.g., hydraulic
conductivity) that are ineluded in our models., In spite of these
uncertainties we will continue to take a deterministic wview in this
paper.

Although several special analytical sclutions have been obiained
for important groundwater flow problems, general solutions are usually
required. This is particularly true for contaminant transport analysis.
There are very few useful analytie solutions available for practical
applications. As a consequence, the remainder of this seetion will
present numerical snalog techniques of which the most prominent are
domain wmethods: finite differences or finite elements, Before
discussing these, hewever, we will diseuss some mathemstical concepts
that are useful to not only understanding numerical analogs but are
essential to successfully applying these technigues,

The first concept is that of & solution domain, A solution domain
for studying groundwater movement econsists of & finite three-
ditmensionel space of soil and water surrounded by a closed surface.
The boundary ef the selution domain is defined sueh that boundary
conditions are known or ¢an be ressonably inferred. For this reason,
these types of problems are often referred to as boundary value
problems, and the securate specification of boundary conditions is an
important part of the problem. Sueh a domain is shown in Figure [. In
this case, Equation (8) applies to the entire solution domain. An
example of each type of boundary condition is shown; thus, for such a
problem, the numerieal analog must acecommodate such conditions.
Also shown Is an internal interface condition requiring special
numericel eonsiderstions since at this interface a parabolic equation
{unsaturated zone) becomes an elliptic equation (seturated zone),



Upon defining a solution domeain, initial conditions must be
speeifled. Such conditions are usually specified at discrete points in the
solution domein. These points are dictated by the diseretization
reguired in order to develop a general numerical solution, the second
impertant coneept, Figure 2 shows an example solution domain that has
been diseretized inte subdomeins. This example depicts a typical finite
element solution. This example assumes that more aceuracy is required
where subdemains are small.  Consequently, a particular numericai
methad may be required. Also notice that the solution boundary will
involve some geometrie approximation. In this ecase straight line
segments  approximate the solution boundary geometry. The
discretization assumes lumped average parameters are available for
cach subdomain, This may not be the case, requiring calibration of the
model before it can be applied to & case study. Al models require some
level of calibration il thay are to yield useful results.

FINITE-DIFFERENCE METIIOD

A linite-difference scheme ecan be eonstructed by diseretization of the
total solution domein and application of Darey's law, Equation (2), and
continuity, We will take this simple approach here, applying the
methed to a two-dimensional herizontsl aquifer. By using finite-
difference approximations for the flow equation, Equation {10}, a
numerical madel can be developed that may include the effects of
recharge or aceretion. In the model, the soil mairix is assumed
nondeformable and fluid compressibility effeets are assumed negligible.
The spatial variation of all parameters are assumed to be negligible ip
the verticel direction and linear in the horizontal (x,¥} directions.

Since the soil-water is assumed incompressible, a volumetric
control volume balance can be made, equating inflow of soil-water
acrass a control volume boundary, T, to the rate of incresse of snil-
weater content in the control volume, 2. Tigure 3 shows a typical
control volume, 7, with boundary (T =Ty + Tg + I's + T4} In the finite-
dilference model, the groundwater basin iz spproximated by a mesh
constructed of lines parallel to either the x or y axis,

At the center of each resulting control volume s a nodal point,
Fj,j- Frem Figure 3, the control volume balanee is given by
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where R is a soil-water velumetrie souree per unit ground surface area,
assumed uniform on @ &nd S is the apparent specifie yield that
expresses the instantaneous volumetric soil-water removal {or addition)
to the change in the velume of the aquifer below the water table.

In Equation {12), the soil water flow rate terms are defined on the
boundaries of £, which are Iocated midway between nodal points.
Additionally, the wvolumetrie rate of soil-water flow inte I is
determined by the Darelan flow rate multiplied by the cross-sectional
area of flow, which depends on the width {Ax or Ay) and the height of
the water table, h, above the impermeable underlying base.

A numericel solution ean be determined by approximating the
space derivatives at the midpeint and time derivatives for a small
duration of time, recalculating transmissibility parameters based on the
new estimates of the model variables, end then repeating the
approximation procedure. The various rate and volumetrio equations
that are applicable to each control volume are simplified by assuming
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where (X,, yg) are the coordinates of nodal point, Pjj and all
parameters are held constant for a specified period. The simplified
equations are approximated by finite differences, as follows:
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In Equation {14}, Ri,j and Si’j are parameters evaluated at nodal point
P In {14e), the superseript k indicates values of the variable, ¢,
cvaluated at time {t = kAt), where 4t is some timestep size. It should
be noted that the finite-difference approximations are based en the
assitmmption that ali parameters vary linearly between nedal peints;
eonsequently, other approximations can be developed assuming more
complex variations of the model parameters,

The numerical algeorithm is to first estimate all parameters based
on the known values of ¢ {end ) at some time Jevel (1 = ko), I k=0,
then the model time is zero and all values of ¢ are {o be defined by the
initial condition of the problem. The second step ol the algorithm is to
compute values of the variables +*1 from the several nodal equations
developed by applying Equation (14) to each nodal peint in the problem
domain. The third step is to recompute the varicus parameters and the
groundwater table depths, h, at each nodal point based on the new
values of $, and then proceed to steps one and two,

Trom Equation (14), & nodal equation can be written as
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where the soefficients (Cj, Cp, C3, Ca) follow from Equation (14a).
Rewriting Equation {15) with respect te nodal point values of ¢ gives
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Applying Equation {16} te each nedal point in a n-nodal point mesh of
the problem domain results in a system of n-linear equations that can be
weritten in matrix form as
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where C is the global matrix of eoefficients from Equation {16); R and §

‘are arrays using parameters deseribing a source flow rate and apparent

speeific yield at the nodal points; and ¢ and é are nodal point values,
ang the time derivative of nodal peint velues defined by
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For groundwater basin modeling problems where the water table varies
slowly, the C, R, and 5 arrays are computed based on the values of ¢ at
timestep k. To better estimate the water iable gradients, however, the
¢ vector eontribution may be eomputed as an implicit expression giving

el(1-¢) gk+ £ cgk”]* R=35 (gk”- @"}/at 9

where (0 ££51). For (€ = 0), an explicit algorithm results. TFor (¢ = 1),
a fully implicit algorithm results, For € = 1/2), the well-known Crank-



Nicolson algorithm results, Stability and convergence criteria for the
various time-domain solution techniques are discussed in MeWhorter
and Sunada?, Equation (1%) can be rewritten inte the more convenicnt
loem

Le C-s/atd® o = [(e -1) c- 5/0t1% 0% - 0se51 )

The superseript notations on the parameter arrays indicate that values
are caleulated at timestep k, The matrix system of Eguation (20) can
be solved by iteration or the Gaussian elimination method to solve for
ek 1n Equation (20), the constand head boundary cenditions are
specified in setting

ki _
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FINITE-ELEXMENT METHOD

bl ¢ii<,j = ¢, .3 (houndery condition) {21}

The {inite-eletnent method is now widely used to solve regional aquifer
problems posed in a horizental two-dimension scale as well as vertieal
slice two-dimensional scales. Dear! and Pinder and Grayll review
some of these efforts. 3ome authors pereciva several advanteges to the
use of finite-element methods over classica] finite-difference methods.
The most often cited are the following:

1.  Ease of using a variable arbitrary discretization mesit

2. Ease of incorporating boundary conditions without special
gradient approximations

3. Dasec of dealing with heterogeneous-anisotropie domains

There sre twe basie ways of developing a finite-element
numerical analog: the variational functional technigue or the Galerkin
technique, Doth methods lead to identical results for the type of
symmetric problems we are dealing with here, Because the Galerkin
technigue is somewhat more general and is widely cited by those
applying finite element methods to porous media flow problems, we
shall base our developtment on this method.

The Galerkin finite element technique is basically a rule for
vedueing the governing partial differential eguations to a matrix
statcment involving a matrix of known elements and a matrix of
unknown state variables. The Galerkin formulation selves the governing
partial differential equation by setting the governing equation
orthogonal to some error weighting function:

J {(B{¢} - Flw=0 (22)

where B is a partial differential operator {operating on the variable ¢).
f is sotne funetion, and w is g weighting function, Since the horizontal
two-dimensional problem was studied in the previcus seection, the

vertical slice problem will be considered here. Using Equation (8} as the
governing equation, Equation {22) becomes, on substituting Equations {(8)
and {5),
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where e represents a partieuisr finite element domain ¢ and w equals
N;.
]

The next step Is to define a finite element shape, which may
range from triangles to quadrilateral shapes with specm} cu{-ved sides _to
geometrically simulate the boundary. In this derivation we will
illustrate the finite-element methed by using the commonly uged
irigngle (shown in Figure 4). Finully, we make an sssumptlion
approximating the state variable within this domain and on its
boundary; i.e., we specily a trial solution function such that

5= \ 24
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where t; appreximates ¢, ¢2 are the nodal values, and Nj is a shape
function. For simplicity wle shali assume Nj is a linear pol}rnomlal
function of space, requiring three vertex nodal points in triangular
finite element Q€

Equation (23) is integrated by parts, Equation (24) is substituted
into the results, and the indieated differentiations and integrations are
carried out over element {8, yielding the clement matrix equation
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where element matrices aregiven by
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where (yj j = ¥j - yi) and (x| j = xj - xi} and
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and {¢}2 is & vector of nodal state variables, {$1€ iz & vector of nodal
state variable derivatives with respect to time, and A® {3 the element
aren. ZienkiewiczlS pgives complete detzils on the derivation of
element matrices and vseful matrix formula. Eaeh element matrix is &
function of lumped element garameters and the global ccordinates of
its nodes. In order to carry out the required integrations, it is assumed
thot the parameters are constant in cach element. Equation (28) is
strictly applicable to interior elements of where thers are no spacified
element boundary conditions,
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The next step after deriving the completely general element
matrix equations is to assemble each element matrix eguation into the
global system equation:

S{a} + PL§T = {F} (28}

where § and P are squarc-banded system matrices that are functions of
the clement conduction, and storativity parameters and spatial
diseretization, {¢} and {4} are vectors of the unknown state variable
and its time derivative, respectively, and {F} is a funetion of speeifiad
boundary cenditions.

Algorithms for assemnbly of the system matrices, Equation (28),
ace given in several texts: Zienklewiczl3, Myersl0, and Segerlindl?,
Gengrally, the approach in a computer pregram is to initialize the
matrices to zero and then add in each element contribution in a way
such that each node equation will have all of the element contributions
acequnted {ar. Speeified boundary conditions are conveniently handled
by entering the boundary condition in {F} at the appropriate node
number level, entering a 1 on the diagonal of 8, and zeroing out all the
other matrix elements contributing to that node equation., Natural
boundary conditions, i.e., zera flux conditions, are automatically
aceommodated  without any special provisions, Flux boundary
contitions are entered into {F} a5 described in MyerslO,

A peneral finite~difference formulation of the temporal term in
Cquation (231 is given by
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whare 4t Is a specified timestep. For {€ = 1/2}), the Crank-Niecoclson
method results, for (€ = 1) & fully implicit method results, and for (€ =
0) & fully explicit methed results. The horizental two-dimensional
problem model ean be developed by following the previous derivation
and using the appropriate governing flow equation.

Computer programs written for the finite element method are
commonly written in FORTRAN langusge. Tull sdvantage of the
symmetrical, banded nature of the system matrices is taken to
minimize computer memory reguirements and to maximize the solution
speed. Matrix solutions are generally by Gaussian elimination.

An excellent example of applying the finite element method of
anglysis is & study of water level and water quality effects of in the
Cogchells Vailey, Californiald, This aren is characterized by a large,
unconfined groundwater basin in the desert region of southern
California in the vicinity of Palm Springs, The approgch taken was to
use an existing two-dimensionel model and apply it to the horizontal
movement of water in the aquifer, Figure 5§ shows the area modeled,
whieh is surrounded by nonwater-bearing deposits, This particular
madel uses isoparametric quadrilateral elements, whieh are also shown
in Figure 5. Isoparametric elements are simply & parametric algebraic
formulation to transform poarectamgular elements into rectangles for
purposes of the finite-element formulation,

Substantisl efforts were required to identify boundary conditions
and basin surface element inputs (e.g., artificjal recharge} or outputs
{e.g.,, pumpage), Calibration of the model was required {always the
case} since imperfeet knowledge of transmissive and storage
paremeters Was available, This was done using historical data on
inputs,outputs, boundary conditions, and measured water levels. Figure
% shows a comparison of simulated gnd measured water levels at three
points in the basin after calibration was completed,

UNIFIED DOMAIN METHODS

Hromadika and Guymon? and IHromadka et ai.8 have shown that an
infinity of domain methods may be accommodated by a single mass
lumping matrix system. This method, which is called Nodal Domain
Integration, stems from the same concept as the (alerkin weighted
residual method, A Galerkin finite-element formulation is obtained by
defining &n eiement shape and trigl function and integrating over the
finite element domain. Other mass lumping schemes zan be devised by
redefining the integration domain and the density of the state variable



approximation. For cxample, assuming a triangular element linear trial
function and integrating over a subdomain, 2y, defined geometrically as
one third of a finite-element area drawn to include one vertex as shown
in Figure 7, an integrated finite-differcnce scheme is obtained.
Depending on the domain of definition or the assumed trial function, an
infinity of mass lumping numerical analogs may be obtained.

Similar to the finite element method, a general matrix equation
may be defined

s¥6)° + P24}, = 1F) (30)

where for a lingar trial funetion, triangular finite element §'i5 defined
by Equation (26) and
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where, as before, e represents a particular interior finite element, A€ is
the element area, and (8*)¢ is the element term defined by Equation
(6). For {n = 2), the uvsual Gelerkin finite-element foermulation is
obtained. For {n = 22/7) {approximately 7}, a subdomain integration
formulation is obtained. For {n -}, an integrated finite difference
scheme results,

Thus a single computar code can be developed that encompasses
all these domain numcrical analogs. Through the specification of a
single parameter, 1, one can choose a numerical seheme that best fits
the type of problem being considered. For instance, where the state
variable, ¢, may be changing slowly in spaee, specification of {n = 2}
may be best. Where sharp wetting fronts oceur in the solution domain,
the speeification of a large n(zay 1,000) may be more appropriate,
There Is no reason why n may not be a function of space and time,
permitting one the luxury of having the "best" numerical analog
approximation in various subdemains of the solution region or where
conditions may change with time. Time domain solutions are similar to
these used in finite-elemamt selutions {i.e., Equations {29},

An example of the nodal domain integration method applied to an
groundwater movement problem [s presented in Figure 8. The solution
domain consists of a two—dimensional vertical slica of soil containing
several semi-pervious clay lenses. Figure 8 shows the solution domain
divided inte triangular elements (approximately 1t ft high by 30 ft
wide). “Ponded water in an flood control basin located near a lendfill
site tends to move horizontally in pervious layers rather than to
pereolate vertieally to the underlying groundwater aguifer. Water is
ponded to a 20-ft depth for 30 days. This example demonstirates the

need for good geotechnical data as well as a mathematical model
simulation to verify the assumed hydraulie behavior of groundwater
flow and contaminant flow. The medel includes both saturated and
unsaturated flow phenomena, The time domain solution is by the fully
implieit technique to accommodate internal free water surface
(phreatic) eonditions. For this example n was set to 1,000,
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Figure 2, Discretization of solution domain,
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