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The best approximation method applied to
three-dimensional steady-state heat transport
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The best approximation method is extended to the numerical solution of three-
dimensional steady-state heat transport problems. Two families of trial functions
are used in the numerical solution; namely, harmonic polynomials and constant
sources. Numerical approximation error is evaluated by means of approximate
boundaries ‘whereby error is visualized as a geometric displacement of the
problem boundary. The problem considered s the determination of lemperatures

within a nuclear reactor.
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INTRODUCTION
The best approximation method

The theoretical development for the subject mathemat-
ical model is provided in detail in Hromadka et al.;’
only a hrief presentation is provided herein. Let £2 be a
region in R™ with boundary T" and let ¢l{(£2) denote the
closure of §2. Consider the Hilber space Ly(cl(Q).dy),
which has inner-product

(frg)= Jfg dp (1)
To construct an inner-product for the developmem of a
generalized Fourier series, the measure g is chosen
where p is the measure g, on Q and another measure g
on I'. One choice for a plane region is to let g, be the
usual two-dimensional Lebesque measure df? on € and
j12 be the usual arc length measure dI" on I'. Then

()= | feaa [ sgar @

- . b
defines an mner-product.”
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Counsider a boundary value problem consisting of
an operator L defined on domain D(L} C L,(€}) and
mapping onto IL,{Q}, and a boundary condition
operator B defined on a domain D(B) C Ly(I") and
mapping onto L,(I"). The domatns of L and B are such
that for fin D(L), Lfis in L5(€}). and for fin D(B), Bf is
in Ly(T). (For example. we could have Lf'= V?f, and
Bf (s} equals the, almost everywhere {a.e.). radial limit
of f al the point 5 on I with appropriate domains).

An operator T is constructed which maps its domain
D(T) = D(L) " D{B) into L,(cl({1}} by,*

Tf(x) = Lf({x) for xin

| 3)
Tf(sy=Bf(s)forson

This operator T on the Hilbert space L,(cl{§2})) mcor-
porates both the operator L and the boundary con-
ditions operator B, and is linear providing that both L
and B are linear.

Consider the inhomogeneous equation Lf = g,, with
the imhomogeneous boundary condiiions Bf = g,, and
define a function goncl{Q) by: g=g, on 2, g =g, on
I'. Then if the solution exists for the operator equation
Tf = g, the solution f satisfies V2f= gironfland f= g,
on I'. One approach to the approximate solution of
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Tf=g is to look at a subspace D, of dimension n,
which is contained in D(T), and minimize |[Th - gf|
over all # in D, such as developed in detail by
Hromadka et al.?

Definition of inner-product and norm

Consider a linear operator relationship L{¢) = A defined
on the problem domain with auxiliary conditions ¢ = ¢,
on the boundary T, The domain {2 may represent both
time and space and ¢, may be both initial and boundary
conditions.

Choose a set of m lincarly independent functions
{/i}7=1. Let $™ be the m-dimensional space spanned by
the m elements of { /;}.

Define the inner-product (u.v) for u, v € §” by

(1) = J wodl’ + j Lu LvdQ (4
hy o
The associated norm °J| |I” is given by
i = (.22 (5)

Using the above innersproduct and norm, a generalized
Fourier series can be used to find the ‘best’ approxi-
mation ¢,, € §” of ¢ by constructing a new set of
functions {g;}, by the orthonormalization of the {f;}.

Orthonermalization process

Orthonormal functions {g;} are generated by the well-
known Gram-Schmidt procedure using the previous
inner-product and norm. That is,

& =h/I 4
m = [fm - (,fm:gl)gl = (fm:gm—])gm-—l} (6)
/“fm - (fm!gl)gl - (fm:gm—l)gm—lli.

The elements {g;} form a basis for S™ as do the
elements of { f;}. However, because they are orthogonal,
the elements of {g;} can be directly used in the
development of a generalized Fourier series where the
computed coefficients do not change as the dimension
increases.

Each element ¢,, € S$™ is written as:

m .
Om = Z’hgi (?}
i=1

where ém € 87, and the +; are unigue real constants.

Generalized Fourier series

The objective is to determine the element cf}m € & such
that ||¢ — &/ is a minimum, where
2

6 = SII° = L» [Z "8 = fm,] dr
i=l )

" 2
LS ~g - Lo
+ ,’;}[ g Ti 8 (D} dn

m 2
= j [ Yigi — %J dr
Tl

I

m ']2
+ L {; v Lg, fJ dQ (8}

Therefore, minimizing (¢, — &{° is equivalent to
minimizing the sum of the L® error in approximating
the auxiliary conditions and the L2 error in approxi-
mating the operator relationship. Because the inner-
product is well-defined and the {g;} are orthonormal-
ized, the minimizing coefficients v; of eqn (7) are the
generalized Fourier constants, ~;:

7= (gne), i=12....m )
Thus,

T Ll
O = 21 g =2 (80 dls, (10)
= i=

is the 'best’ approximation of ¢ in the space S™. from
the above definition for the inner-product.

The weighted inner product

In the inner-product of eqn (4], consideration is given
to the two basic requirements imposed on the best
approximation funciion g,, from the space $™ spanned
by the m trial functions in {f;}. That is, the L error in
satisfying the linear operator relationship over Q is
weighted equaily as the L’ error in satisfying the
problem’s auxiliary conditions. '

It can be useful to weight the inner-product terms in
order not {o bias the approximation in either of the error
minimization efforts. For 0 < € < 1, one weighting of
eqn (4) is:

(u,v):=ejruvdl"+[l - €) L Lu Ly dQ (11}

In eqn (11}, an e-vafue close to one would force the
approximation function ¢,, to focus upon satisfying the
problem’s boundary conditions rather than satisfying
the linear operator. Conversely, an e-vaiue close to zero
wouild emphasize the linear operator relationship rather
than the boundary conditions.

The general problem

In this paper, 4 variant of the best approxin:lation methogd
is applied to find an approximate solution ¢,, € $™ to the
three-dimensibnal linear operator equation with bound-
ary conditions:

Le¢ =0 on domain 02

12
¢ = ¢y, on boundary I (12)
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where S is the m-dimensional space spanned by the m
triat functions { f;}.

By a judicious choice of trial functions { £}, the inner-
product in eqn {4) can be simplified. In particular, by
choosing trial functions {f;} which satisfy the linear
operator equation

Lfi=0o0onQfori=1,....m (13)
the inner-product in eqn {4) reduces to
(of) = | fifar (14

Since only the problem’s beundary s used in eqn (14),
the inner-product weighting, ¢, is unnecessary.

Approximation error evaluation — approximate
boundary method

If ¢, satisfies the auxiliary conditions in eqn (12)
exactly, and the trial functions are chosen that satisfy
eqn (13), then ¢,, = ¢ everywhcre on QUT. If ¢, is not
cxact, the least-squares (Z%) error occurs on I'. This
suggests a method of evaluating the error of the
approximation. This method, called the approximate
boundary method, requires that a new boundary, I‘ be
constructed which has the property that (for 2 being the
domain enclosed by f),

L6, =0 on €
. ) (15)
P =0y on T

In this way ¢,, forms an exact solution 1o the problem,
but with a geometrically transformed domain and
boundary. An evaluation of the modeling error can be
made by comparing I with I". Hromadka et al.® use the
approximate boundary to evaiuate modeling error for
several case studies.

COMPUTER IMPLEMENTATION

A FORTRAN computer program was prepared for
three-dimensional analysis of steady-state heat trans-
port.- In order 1o develop the approximation, ¢,,, each
trial function, f;, is itself approximated as a finite-
dimensional vector whose elements are the value of the
trial function evaluated at each of a set of evaluation
points defined along the problem boundary. In this
paper, three-dimensional steady state heat transport is
considered. and the trial functions were selected that
satisfy the Laplacian equation V2{f;) = 0 over the prob-
lem domain, Q. thereby making 72 error minimization
necessary only on the boundary, T". Because the trial
functions f; are represented by discrete vectors, F;, all
Gram-Schmidt operations between functions are com-
puted by equivalent operations between vectors in R",
That is, the inner-product of eqn {14) is replaced by the

familiar vector dot product of two vectors:
(Fy, F; Z FyFy (16)

where Fy is the kth component of the ith vector.

The problem boundary is represented as a mesh of »
evaluation points stored in a singte vector, G. The
vectors F; are developed by evaluating trial function f£; at
each (x, y, z) nodal point stored in vector G.

Upon development of m vectors F; (for m trial
functions f;), the computer program then: i} ortho-
normalizes the trial functions (basis vectors), and ii}
computes the coefficients of the ‘best approximation’,
¢m- The vectors, Fj, representing the trial functions, are
orthonormalized by the familiar Gram-Schmidt process.
The resulting orthonormalized vectors are denoted by
vectors Gq. Note that the inner-product used is the
vector dot product of eqn (16).

Once the m orthonormalized vectors G; have been
constructed, the generalized Fourier coefiicients are
computed. The Fourier coefficients are used in back-
substitution through the Gram-Schmidt process to find
the coefficients of the approximation ¢;,. These finu!
coeflicients are written to a file for post-processing in
routines that generate the approximate boundaries.

APPLICATION: THREE-DIMENSIONAL
STEADY-STATE HEAT TRANSFER

Fordemonstration purposes, a specific three-dimensional,
nonsymmetiric, boundary value probiem was studied.
The problem isthat of finding the steady-state temperature
at any point inside the shielding of a simplified nuclear
reactor. The reactor is modeled as a solid block one unit
long, haif a unit wide, and three-quarters of a unit tal)
with a spherical, high temperature, core placed in one
corner (Fig. 1). The domain, €, then consists of the
solid block minus the inside of the spherical core. The
boundary is comprised of two disjoint parts: the surface
of the block, I'y, and the surface of the core, T,. The
temperature of the outside surface of the reactor is
defined to be 100 while the temperature of the inside
sphere surface is set at a constant 1000. The differential
equation governing the steady-state temperature distri-
bution in the domain is the Laplacian:

Fo 7 o

2.

e +9%¢ 17)
Vig= ox? +6y 822 (17

where ¢ = ¢(x,y,z} is the absolute temperature at
location (x,y, z). The problem statement is thus

V(o) =0 in O
¢ = 100 on T; (18}
¢ =1000 on T,
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@/a, 18,8 T

Fig. 1. Nuclear reactor problem definition (steady-state heat
transport).

One corner of the box is located at (0,0,0) and the
opposite corner is {1'6,0:5,0:75). The center of the
sphere is located at (0-74,0-25,0-25), and its radius is
Q-125 units.

Trial functions

For the considered problem, all trial functions chosen
satisfy the Laplacian everywhere on the domain and
boundary. The trial functions considered are gither
harmonic polynomials, or the functions in eqn (19) with
a singularity, not in the domain, which is like the
singularity of a Green's function.

1/2

1
(x,y.2)= 1" — 19
Sl ((x*-%)“r(y—ﬁ)”+(z—é)2) it

where (%, 7,2) is @ point exterior to £ and T

The set of harmonic polynomial trial fuactions are
readily extended by scalar multiplication and addition of
other harmonic polynomials. The singular functions are
dependent upon the choice of singularity point location,
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Fig. 1. Approximate boundary, I, for horizontal z = 0-25 slice.
Twelye harmonic polynomials and 36 singular functions used.

Fig. 3. Approximate boundary, I', for harizontal z = 0-25 slice.
Sixteen harmonic polynomials and 84 singular funclions used.

that surround the problem ocuter boundary or that lie
inside the interior sphere. The sum of the several trial
functions, each multiplied by some constant (t0 be
determined) still retains the property of being harmonic
throughout the problem domain. The trial function
coefficients are then selected as described in the previous
mathemaiical development.

Approximation aceuracy is evaluated by plotling
the approximate boundary T with respeet 1o the true
boundary I'. In regions where [ and T differ signifi-
cantly, additional singular functions are added to the
trial function set with singularities near that place,
and harmonic polynomials are added as well. In this
fashion, approximation error is reduced. It 15 recalled
that for each approximation, the governing Laplace
equation is satisfied exactly throughout 2 however,
there remains approximation error in satisfying the
boundary conditions on I'.

Constructing the approximate boundary, T’

For each trial approximation, the approximate bound-
ary I is developed as a set of two-dimensional slices of
QUT. A slice of key interest is the horizontal one
located at vertical coordinate z = 0-25, which corre-
sponds to the equator of the spherical core; it was

Fig. 4. Approximate boundary T for approxirmation of Fig. 3.
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" discovered that the z = (25 horizontal slice generaily
showed the greatest discrepancy between I and T.
{Similar slices in the x—z and y~z directions were also
considered).

For a selected set of trial functions, the model rp,,,
developed using the previous generalized Fourier series
construction. The @,,(x,y,2) is used to evaluate the
tocation of the isotherm g,,(x, y,z = 0-25) = 1000 and
also the location of the isctherm GulX, y, 2 = 0:25) =
100; the resulting @, isotherms are associated to
boundary contours I'y, and T, respectively.

As additional trial functions are added to the set, I’
was approached geometricalty. Figures 2 and 3 dem-
onstrate [ plots on the = = 0-25 horizontal slice through
U T for two sets of trial functions. It is noted that in
Fig. 3, the second set of trial functions is based on the
departures between I' and T from Fig. 2. Figure 4 shows
several [ plots for horizontal slices through QUT, using
the trial funetion set of Fig. 3. From Fig. 4, I may be
sufficiently close 1o T to suggest that the @, function is
adeguate as an approximation of the boundary value
problem. If Tis acceptable as being the ‘true’ problem
geomemc shape, then @, 15 the exact solntion to the
‘new’ boundary value problem.

CONCLUSIONS

In this paper, the best approximation method 1Is
applied to three-dimensional steady-state heat transport
problems. Additionally, the approximate boundary
technique is used to demoustrate approximation errog
i satisfying the problem auxiliary conditions. Because
of the approximate boundary approach, numerical
approximation error is perhaps more easily visualized
than other, more conventional, methods of evalunating
the approximate error.
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