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period (1930-1948) resulted in the least runoff estimate;
the second, dry period (1948-1966) resulted in a higher
runoff estimate, despite reduced precipitation, and the
latter wet period (1966-1984), indicated a still higher
runoff estimate. The key ingredient in these comparisons
is the increasing runoff estimate, regardless of the
quantity of the rainfall. As a result the 1965-1984 peak
runoff subset was used for evaluation of locations in the
Los Angeles River-San Gabriel River where urbanization
was an important factor.

{(2) calibrating Rainfall-Runoff Parameters: loss
rate parameters were varied for each discrete frequency
runoff determination (2-year, S5-year, ... 100-year) in
a manner which resulted in the "best composite fit" of
subarea discharges to analytical frequency discharges for
each frequency. Because of the wide range of relative
frequency flows (gauged vs. computed), no dgeneral
systematic approach could lower the high results, as well
as railse the low results. The "best composite fit¥
concept attempted to produce a normal distribution of
relative peak discharges. Ratios of gauged to computed
discharges were determined for each discrete frequency
for the calibration subareas, and the loss adjustment
parameters then modified to produce the most normal
distribution of these ratios about 1.0 as the mean. The
generalized values of these loss parameters were then
input into the HEC-1 rainfall runoff model along with
appropriate reconstituted unit graph parameters for each
of the 50 LACDA subareas.

Suppary

Since the upstream flows are calibrated to
observed results, and since simulation of the rainfall-
runoff process (including reservoir releases), results
in downstream runoff which agrees with observed flows,
it is reasonable to expect that the intermediate results
are also representative of existing conditions.
Furthermore, the modeling process provides these
frequency discharges, as well as hydrographs, in a format
which allows consistency and the ability to be
manipulated while analyzing project alternatives.
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Abstract

Almost all rainfallrunoff link-node models in use today invoive the
subdivision of the catchment into smaller areas, linked together by a system
of channel links, These "link-node" hydrologic models represent the flow
processes within the channel links by a translation (moving in time) and an
attenuation (reduction of the meximum or peak flow rate) of the runcff
(nopdwater) hydrograph. The runoff in each subarea is based upon the
av.all‘able rainfall data, modified according to an assumed "loss rate" due to
seil-infiltration, ponding, evaporation, and other effects. The net effect of
aﬂ_these approximations is a vast spectrum of possible modeling structures.
Using a stochastie integral equation, many of these rainfall-runoff models
can be represented by a single generalized model that is tractable to
analysis of the uncertainty in the model structure.

Introduction

In this paper, the rainfell-tunoff model uncertainty problem is
addressed by providing 8 methodology which can be incorporated into almost
all rainfall-runoff{ link-node models. The methodology is based upon the
standard theory of stochastic integral equations which has been successfully
epplied to problems in many scientific areas {e.g., Tsokos and Padgett, 1974
provide a thorough development). The stochastic integral formulation is
used o represent the total error between a record of measured rainfall-
runoff data and the model] estimates.

Stochastic Integgral Eguation

Rainfall-Runcff Model Errors

.~ Let M be a deterministic rainfall-runoff model which transforms
r"Ja;(nlg‘al; data for some event, i, noted by Pg‘(t), into an estimate of runoff,
. , OY

M Pgi(t) — Mi(t) (1

where t is time. In our problem, rainfall data are obtained from a single
rain gauge,
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Let P.i(t) be the rainfall measured from storm event i, and Qi(t) be
the runoff measured at the stream gauge. Error terms are defined far an
arbitrecy storm event i,

Qgi(t) = Mi(t) + Eqyi(t) + Egl(t) + E,i() t)]

where Emi(t) is the modeling error; Egi(t} is the error in data measurements;
and Ep¥1}is the remaining “inexplainable” error.

Let EI(1) be the total etror

Ei(t) = Epi(t) + Egi(t) + E (D) (3)
Because Ei(t) depends on the model M used in Eq. (1),

Qgi(ty = Mi(t) + Exyi() @

where Eyi(t) denotes the conditional dependence of Ei{t), on the given
model type M.

For a future storm event D, the EpD(t) is an unknown realization of a
stochastie process distributed as tEMD(t) where

famPul = MD(t) + [Ey Do) (3)

Should A be some functional operator on the distribution of possible
outecomes (e.g., detention basin volume; peak flow rate; median flow
veloeity, ete.) of storm event D, then the value of A for storm event D,
noted as AMD, is a random varisble distributed as [Ay D], where

(AmP] = AfQuDu] ()
Developing Distributions of Ouicomes for Model Estimates

The distribution for [EyqP{t)] may be estimated by using the available
samplings of realizations of the various stochastic processes:

{Eni(0)) = {Qgi(t) - MUV, 1 = 1,2, -

Assuming elements in {Eyit}j to be dependenmt upon the "severity® of
Qg'{t), one may partition (Eyt}} into classes of storms such as mild,
major, flood, or others, should ample reinfall-runoff deta be available to
cevelop significant distributions for the resulting subclasses,

The second assumption involved is to assume each En'(t) is strongly
.correlated to some [unction of precipitation, FH{t) = F(P,I(t}), where F is an
operator which includes parameters, memory of prior Tainfall, and other
factors. Assuming that Exji{t,) depends only on the values of Fi(t) for time
t < tg, then Epl(t) is expressed as a causal lineer filter (for only mild
conditions imposed on F(t)), given by the stochastic integral equation (see
Tsokos and Padgett, 1974)

tO
Fitto - 5) hygi(s) ds (8)
9

5=
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ity i i it), Fi). Other
i(t) ig the transfer function between (Ep!(t), F 1
:::;ﬁ!argg., instead of FI{t), are Pg‘(t), and the model estimates itself, M(t),

ignifi ing distribution
iv s significant set of storm deta, an underlying
I’h\l(t%l g? the {ghMi(t)} may be identified, or the {_h:v["(t)} may be used
directly as a discrete distribution of equally-likely realizations,

[Qu] = MDY + [EyDV] (9)
Combining Egs. (8) and (9),
t
QD] = M) + [ £D(t - 5) [hyg(s)] ds (10
5=0
For the functional operator A, Eq. (6) is
t
ayD] = AfyD(0] = A[Mn(t) v ] PD(t - 9) [agls)] ds | an
§=0

applications; Development of Total Error Distributions

A Translation Unsteady Plow Routing Rainfall-Runoff Model

Let F be a [unctional which operates on rainfait dats, Pg‘(t), to
produce the realization, Fi(t), for storm i by

F: Pgi(t) — Fi(t) (12)

The caichment R is subdivided into m homogeneaus subareas, B = U
Rj, such that in each Rj, the effective rainfall, ejl(t), is simply

eji(t) = 21 + Xjf) Fi(® {13)

where }j is a constant proportion factor; and where Kil is a sample of &
random variable.
The suberea runoff is
t t
jS(t) = { ejiit - g) ¢>j"(5) ds = ;{ At + XD FUL-s) ¢j4s) ds (14}
$=0 5=0

i i i d to be pure
Unsteady flow routing along channel links is assume ) :
transtation. Thus, each channel link, Lk, has the constant translation time,

t,. Hence,

gjitt -t 5 tz Ty (15)
1

nr--13

qgi(t) =

4
o

where q]'i(t - Tj) is defined to be zero for negative arguments.
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For the above assumptions,

t
! - m 3 .
Qgl(t) = ' Fit-5) [Z M+ X bjls - Tj)] ds (16)
$=0 3=l
In a [inal form, the runoff response is
. . i . {t . m -
Qgi(t) = I Fi(t-s) 1 AjogMs-tds+ | Fits) T 3iXjlayits -1 ds (1
s=0 3=l 520 3=
From Eq. (17), the model structure, M, used in design practice is
-t m
i(yy = j Fitt - 5) _ZIA; #iils = ) ds (18)
5=0 =
Then, Qgi(t) = 1i(t) + Eyl(1) where
t
Engit) = [ Fi(t - 5) hyids) ds (19)
s=0

Should the subarea UH all be assumed fixed, (i.e., ¢§i(t] = ¢ j{t), for al)
i), as is assumed in practice,

t
My = [ Filt - 5) o(s) ds (20}
)]
m s=0

where ¢{s) = igi"i ¢j(s - 7). Additionally, the distribution of the stochastic
process [ halt)] is readily determined for this si mple exampie,

m
[hait)] = 'ZI [Xj] 2y egtt~ 21

where [ha(t)] iz directly equated to the m random variables, (Xpi =
1,2,»-,m}. Note that the random variables, .‘i_i, may be mutually dependent.
For this example problem, the stochastic integral formulation is
t t
[QuBin] =  FD(t-s) 4(s) ds + J( FD(t - 5) [nyy(s)] ds (22)
s=0 5=0

-

"o—

Multilinear Unsteady Flow Routing and Storm Classes

The above application is now extended to include the additionai
assumption that the channel link iravel limes are strongly correlated to
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some set of characteristic descriptions of the runoff hydrograph being
routed, such as some weighted mean flow rate.of the associated hydrograph.
For example, the widely used Convex Routing technique (Mockus, 1972)
often utilized the 85-percentile of ail {lows in excess of one-haif of the peak
flow rate as a statistic used to estimate the routing parameters, Storm
elasses, [£,], of "equivalent" F!{t) realizations are defined where all
elements of zts 2] have the same characteristic parameter set, C(F!(t)), by

[£z])= (Fiv) |c{Fib) = 2) 23

And for all Fi{t} € [Ez], each respective channel l;'nk travel time is
identical. In the above definition of storm class, z Is & characteristic
parameter set in vector form.

This extension modifies the previous runoff equations (20) and (21) to
be,
t t
wigt) = J Fi(t-s) § Ajojs - 1jP)ds = J Fi(t - 5) ®,(s)ds; Fi(t) € [5,] (24)
s=0 h] s=0

where ®z(s}= [ }j ¢jls - 7j2), and

J
t
Epi(0) = [ Fi(t - s) hy Mo} dss FiO e [£2] (25)
5=0
Defining all randem processes on a storm class basis,
t
Migt) = [ Fi(t -5) ®,(s) ds; Fi(t) € [£;] (26)
s=0

The stochastic proeess [hy (t}] is distributed as

[h’.\iz(t)] = ) [X] A% of2s - 1) Fi(Y) e [£,] (27)
3
In prediction,
[QuP(n]} = MDY + [EyD]; FR(Y e [Ep (28)
where
t
[EMD(] = | FD(t-s) [hap(s)] ds; FPD e[ ep ] (29)
5=0
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A Generalized Multilinear Rainfall-Runof{ Model

Each subarea's effective rain{all, eji(l), is now defined to be the sum
of proportions of Fi(1) translates:

eiftth = T djln + Xyl Fite - syed); Fiy e [£,] (30)
k

where X} and_ 8yl are samples of the random variables distributed as
[Xjk] and [Bjk], Tespeetively.
The subares runoff is
t
qjite) = J Fit-s) § A 00+ Xpeh) ojls - Bycds (31)
s=0 k
The channel link flow routing algorithm is now multilinear with routing
parameters deflied according to the storm class, [ £ ] (see Becker and

Kundezewicz, 1987, for an analogy based on multilinear approximation of
nonlinear routing). .

For L links, each with their own respective stream gauge routing date,
the above linear routing techniques result in the outflow hydrograph for link
number L, O1,(t), being given by

ny -1

OL(") = E ag aF saw
o.L=1 L EL_1=51 L-1
"y ;‘1 : )
ver ¥ oa, Toa, Titew, e, cere-a -~ ) (3p)
Ll 2 8t CE 1 I e

Using an index notation, the channel outflow for L links in the reach, Op(t),
is

oLt = I &g, Mlt-ggs) (33)
<f»

For subarea Rj, the runoff hydrograph for storm i, gj(t), flows through
L; links before arriving at the stream gauge and contributing to the total
modeied runoff hydrograph, M/(t). All of the parameters al . g, and aleps
are constants on a storm class basis,

m . s
; i i
vigy= 77 a 9; (-2’ y, ) (34)
j51 <i> <f,>j J «:Q,>j

The predicted runoff response for storm event D is distributed as
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t 5 m 5 )
[QuPa)= J FOrt-s) | 1 T a2y 1 (DX dleg(s-D8,]
«10 =1 <i> Ik
- ai‘bj)l ds; FOt) fep] (35)

For any operator, A, on the predicted runoff response of Eqg. (35), the
outcome of A for storm event PgD(t) is the distribution [AyP],

[aqD] = A MD] = AC{IXg T, (oD {36}
Conelusions

A stoechastic integral equation that is equivalent to Eq. {35) is simply

t
[amP] = J FD(t - s) [n(s)] ds; FD( e [Ep ] o)
§=0
In prediction, the expected runoff estimate for storm events that are
elements of ng] is
1
£ [QuDI] = I FD(t - ) E [n(s)] ds; FP() € [Zp] (38)
5=()

which is a multilinear version of the well-known unit hydrograpk method
which is perhaps the most widely used rainfall-runoff modeling approach in
use today,
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