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INTRODUCTION AND PROBLEM FORMULATION

The use of numerical methods to approximately solve partial differential
equations is widespread, yet the use of error bounds to evaluate the success
of the approximation effort appears to be limited. In this paper, an error
bound inequality presented by Protter and Weinberger [1] is used to gener-
ate useful information regarding the approximation of partial differential
equations by numerical methods. The error bound inequality requires only
boundary condition error information and approximation error informa-
tion that can be readily evaluated, and the construction of an error bound
function w(x, ¥} as described below.

Let @ be bounded domain in the plane with boundary ¢Q =1 =
I U T3, the union of two disjoint sets {(where 1% is not void). It is assumed
that for each point z of T} there is a solid circle C with z on its boundary,
and with C — {z} C Q.

The equation to be solved is

Lu = fin{},
du
o = giom I, (1)

u=gonl;,

where L = V7 is the Laplace operator and du/dn is the normal derivative of

wonl
However, the approximate solution U that is found actually satisfies the
equation

LU= Fin{),
alf
— = Gy on I}, (2)
on
UV==G,onT;.
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Suppose that a function @ on {3 U I' can be found that satisfies

w>0onQ UT, (3a}
Lw = ~1in 0, (3b)
o zlonly, (3c)
wn
w=zlonTy. 3d)

Then, from Ref. [1],

|U(x,}’) - u(x:vy)ll
=< wlx,y) max{syp |F = f|, sgp |Gy = gif, sup (G2 = g} (@)

So, if F is uniformly close to fon (), and if G, is uniformly close to g, on T,
and if G is uniformly close to g; on I3, then U/ is close to u« on {2,

This result is not an existence theorem for the solution u to Eq. (1); that
would require various additional conditions on I}, I3, {}, g1, and g;. The in-
equality of Eq. (4} gives a measure of how close the approximate solution U
is to the true solution «, assuming there is a solution u, which is often clear
on physical grounds.

The aforementioned condition on Iy (that for each z on I3, there is a ball
BinQ U T withzin B and B — {z} C )} prohibits I'| from containing, for
example, two straight line segments meeting at an angle. But it is permis-
sible, for example, to have ( the square {(x,¥}: 0 < x < 1,0 < y < 1} and
I the line {{x,0): 0 < x < 1} (but not the line {(x,0): 0 < x = 1}, a distinc-
tion of little physical significance).

The condition that I not be void is necessary because a solution to the
Neumann problem

Lu=0inQ,
du )
Fy gonT

is only unique to within an additive constant; and the inequality {4) implies
uniqueness.
We remark that the same inequality holds for the more general problem

Lu+ hu=0inQ,

where L is a strongly elliptic operator on R” and Ak 1s a given function, and
the first boundary condition is replaced by

ou
— + au = gyon I,
on “ & !

where « is a given function.
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One approach to finding a suitable e to use in the bound of Eq. (4) is to
find a function n that approximately satisfies

In=-2in{},

i

£=20n1"1, (6)
=2onl},

with sufficient accuracy so that the last three inequality conditions of Eqg.
(3} are satisfied (with substitution of 7 for w). If —B =< 0 is a lower bound
for this solution 7, then @ = n + B + 1 will satisfy all four conditions of
Eq. (3). In a given practical problem, the function » of Eq. (6} can be found
by numerical methods, such as the complex variable boundary element
method (CYBEM). As an example, the following discussion focuses upon
the analysis of potential flow problems, which have many applications.

ERROR BOUNDS FOR POTENTIAL PROBLEMS IN
TWO-DIMENSIONS, AND DEVELOPMENT OF NORMS FOR
ANALYTIC FUNCTION APPROXIMATIONS

If the two-dimensional problem

Lu=0in 0,
du .
— = I, 7
P g on 1y (7)

u=gonl,
has a harmonic solution 4, with conjugate harmonic function v,

flx + iy) = ulx, ) + iv(x, y) {8)

defines a function analytic in (. The relation between v and the normal
boundary condition on I is as follows:

Suppose that I is a simple smooth curve, except for a finite number of
corners, with a parameterization

I ={&@,y)):0=1=<1} 9

with a nonzero tangent [x'(s),y'(#)] at all noncorner points of the curve.
Since the vector [y'(£), —x'(#)] is perpendicular to the tangent to the curve,

L V0w

s'(1) : (10)

are unit normals to the curve, where

50 = 0+ y D" ay
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Suppose that in Eq. (10) the plus sign gives the outward pointing unit nor-
mal at a point #;; since by hypothesis the vector in Eq. (1) is never zero,

a(ty = GO =X 0 a2

is the outward pointing unit normal to I' for all ¢, excepting those ¢ for
which the curve has corners.
If, in addition, we suppose that f is actually analytic on I, using the
Cauchy-Riemann equations gives
du , , ,
o, = e n = {uy'(@0) = a0 O

= {ny'(0) + vx(O}5'()

d
- {d—‘; ), y(m}/s'm. (13)
Consequently, the boundary condition on T}
au
a =& (14)
is equivalent to
vix(), y(8)) = Gh(f) = Lgx(x'(ﬂ, y(m)s'(7)dr. (15}

The hypotheses under which Eqgs. (14) and (15) are equivalent can be weak-

ened and will depend on what sense the derivatives in Eqs. (14) and (15) are

defined and how limits are taken to obtfain the functional boundary values.
Define

lkell. = sup [v] + sup Ju|. (16)

For functions « satisfying the conditions above, this is a norm. The only
difficult property of the norm to check is that if |[u, = 0, then « = 0. This
follows because if |uf, = 0, then the equivalence of Egs. (14) and (15)
shows that « is the solution to Eq. {7) with g, = g» = 0. Then « is zero if
inequality (4) holds, and Eq. (4) will hold if the function o can be found;
this will be so under very mild conditions.

A frequently occurring boundary condition in Eq. (7} is thatg, = Qon I}
{i.e., zero flux on I}. In this case the norms of Egs. (16) and (17) are sim-
plified in that from Eq. (8), v(x, ¥} is piecewise constant valued on each con-
tour composing I'y; if T} is a single contour, then v{x, ¥} = vy on the entire I;.

APPLICATION TO THE LAPLACE EQUATION (POTENTIAL
PROBLEMS)

An important class of problems in engineering and mathernatical physics
involves the solution of the Laplace or Poisson equation in two dimensions.
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Such problems occur frequently in the analysis of potential flow. ln the fol-
lowing, the error bound will be applied to potential flow problems.
Let

1
bplx,y) = —E(x” + y%).
Then
L, = ~2in 2, an

Let W* = ¢* + iy* be a CVBEM approximate solution of the potential
problem

Vigr =0in 2,
W _ .,
o 2 an on T3, (18)

$*r=2--¢,onl;.

Note that if the bounded domain {} is contained in a circle of radius R
centered at the origin, then on £, |¢,| < 1/2R* and |é¢,/on| < R.
The above CVBEM approximation W* is to be determined to within suffi-
cient accuracy to have
a¢ + a;% z1on ].—‘L,
on on (19)

G, =¢*+ ¢, =1onl,

and where L(¢ + ¢,) = —-2 [and hence L(¢ + ¢,) < -1 in {2]. Letting

— B be a lower bound of (¢* + ¢,) in £, then, a lower bound function for
use in Eg. {4) is

G1=

wlx,y)=B+1+¢*+ o, (20

for all points (x, ¥} in {1
Note that there are an infinite selection of w(x, y) functions to choose
from. The particular choice above is readily computable.

REAL VARIABLE AND COMPLEX VARIABLE BOUNDARY
ELEMENT METHODS IN SOLVING POTENTIAL PROBLEMS

An advantage to using approximation methods that exactly satisfy the
operator relationships (i.e., the Laplace equation), such as real or complex
variable boundary element methods, is that in Eq. (4} F = f = 0in {2, and
hence

W, y) = uloy)| £ ol y) maxisgp |G, ~ gif, syp |G ~ g2} 21)
for w(x, y) developed as above.

For the case of zero flux on I, g; = 0 on I and

U, 3) — ulxy)| < ofx,y) max{sup |G}, sup |Gz - g} (22)
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APPLICATION OF THE ERROR BOUND INEQUALITY

Steady-state heat transport in two dimensions is mathematically modeled
by the Laplace equation. In the application now considered, temperatures
are required in a roadway embankment with a buried chilled pipeline
{—40 °C). The boundary conditions for the exact solution, u(x, y), and geo-
metric information are given in Figure 1.

Zero heat flux is assumed on the probiem domain’s left and right sides,
except where the chilled pipeline is located. A 40-node CVBEM model [2]
is used to approximate the temperatures by U(x, y) in £2.

For the error analysis, a w(x, y) is needed for the inequality of Eq. (22).
The particular solution ¢, of Eq. (17} is used. Evaluating ¢, and d¢,/on
on the problem boundary [ a new set of boundary conditions are obtained
for the Laplacc problem of Eq. (18): the top and bottom tcmperatures
become [2 + 1/2(x* + y*] °C. and the zero flux values become [2 —
{0¢,/on]. The chilled pipeline also changes to a boundary condition of
2 + 1/2(x* + y*] °C.

The CVBEM is again used, but this time the goal is to develop a ¢* that
satisfies Eq. {18) as discussed above. Using the same 40-node CVBEM con-
figuration as used for the original approximation, a ¢*(x, ¥} approximation
is obtained, and it is noted that in this case ¢*(x, y) satisfies

Vig* = 0in Q,

ag* o
L st (23)
on an

G+ ¢, >190nT,

and hence the necessary inequalities of Eq. (19) are easily satisfied by this
choice for ¢* The next step in developing an w(x, ¥) is to find some bound
—B < ¢* + ¢, in 2 U I Then, an w(x, y) is developed by Eq. (21).

Using w(x, y), the magnitude of error in the CVBEM approximation
Ulx, y} in satisfying the heat transport problem of Fig. 1 can now be evalu-
ated by use of the inequality of Eq. (21) or Eq. (22). Figure 2 shows plots of

e
Bl 81§

/_—.c
Jdu
30m %%:n 5-7’0 -46’.:/-' b
01t ¥. e
/ . \ n .
— .

FIG. 1.  Application Problem.
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FIG. 2. Plots of |Gy and |Gy — ga].

the |Gy and |G, — g} along [ From Fig. 2, the maxinmm value of either
error in absolute value of |G, — g] or |G, — g,| is easily less than 0.6.
Thus, from Eq. (21} or Eq. (22),

lule, y) = Ulx, )| = (0.6)wix, ). (24)

The error bound provided in Eq. (24) is useful in examining how the
CVBEM approximation U(x, y} approaches thc heat transport problem so-
lution u(x, y} as the approximation errors of |G, — gi| and |G, — g| de-
crease. By adding another 12 nodal points along I' where |G; ~ g,| and
|G2 — g:| are relatively large, a new CVBEM approximation U(x, ¥} is ob-
tained with the property that

max{sup |G, — g1, sup G2 — g} < 01.
Thus, from Eq. (22) and the newly computed w(x, y),
e, y) = Ualx, )| < (0 D)lx, y) . (25)

Because wix,y) is strictly positive and contimmous on U T (for the
CVBEM numerical technique), there exists a bound M such that w(x, y) =
M over } U TU For Us(x, y), M is found to be approximately 3.3. Hence Eg.
{25) can be written, for (0.1M) < 0.33, that [u(x,y) — Ua(x, y)| =< 0.33.

DISCUSSION OF APPLICATION PROBLEM

The application problem demonstrates use of an error bound inequality
for the Laplace equation. In our application, the CVBEM is used to ap-
proximately solve the governing operator ¢quation with auxilliary condi-
tions. Additionaily, the CVBEM is also used to construct the error bound
function w(x, ¥). Other numerical methods can be used, given that the re-
quired inequalities can be shown to hold.

It is apparent that the accuracy of the CVBEM approximation function
Ulx,y), 1o u(x,y), depends on many factors, including the numerical
method's nodal point placement and density. The construction of an w(x, y)
function depends on similar numerical factors,

The error bound of Eq. (21) depends both on how well the U(x, y) ap-
proximates u(x, ¥} pursuant to Eq. (4), and also on the values of w(x, y). Tt is
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obvious that from Eq. (4}, G, = gyonljand G = g on [3 (with F = fin
{1} guarantees that U{x,y) = u(x,y) irrespective of w(x,y) values. Indeed,
o(x,y) > 0 by Eq. (3). Thus, “better” w(x, y) functions can be obtained by
trying to obtain smaller w(x, y} values over {}. The CVBEM is useful in de-
veloping the error bound functions in conjuction with a particular solution
to the Laplace equation.

CONCLUSIONS

An important problem in the use of numerical methods and analysis to
approximately solve differential equations is the evaluation of approxima-
tion error. In this paper an error bound is obtained for this error. The error
bound inequality utilizes (1) the approximation function’s maximum error
in solving the partial differential equation operator over the problem do-
main (}; (2) the maximum error in matching prescribed values of the
boundary conditions of either Neumann or Dirichlet type; and (3) a strictly
positive function w(x, y) constructed such as to solve another, but similar,
partial differential equation with auxilliary conditions.

The application problem demonstrates the use of the error bound in-
equality in a two-dimensional heat transport problem that is approximately
solved by the complex variable boundary element method (CVBEM). The
error bound inequality can be applied to other classes of similar problems.
For two-dimensional Laplace or Poisson type problems, the CVBEM is a
good technique for computing the error bound.

References

1. M. Protier and H. Weinberger, Maximum Principles in Differential Equations,
SpringerVerlag, New York, 1984, 79, 80.

2. T.V. Hromadka TI and Chintu Lai, The Complex Variable Boundary Elemen:
Method in Engineering Analysis, Springer-Verlag, New York, 1987.



