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Abstract

The design storm approach, where the subject criterion variable is evaluated by
using a synthetic storm pattern composed of identical return pattern input, is
shown to be an effective approximation of a considerably more complex
probabilistic model. The single area unit hydrograph technique is shown to be an
accurate mathematical model of a highly discretized catchment with linear
routing for channel flow approximation, and effective rainfalls in subareas which
are linear with respeet to effective rainfall output for a selected "loss" funetion.
The use of simple ™Moss" funetion which direetly equates to the distribution of
rainfall depth-duration statisties (such as a constant fraction of rainfall, or a 6~
index model) is shown to allow the pooling of data and thereby provide a higher
level of statistical significance (in estimating T-year outputs for a hydrologic
eriterion variable) than use of an arbitrary "loss" function. The design storm unit
hydrograph approach is shown to provide the T-year estimate of a criterion
variable when using rainfall data to estimate runoff.
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RAINFALL-RUNOFF MODEL OPERATOR FREQUENCY DISTRIBUTIONS
Probabilistic Distribution Concept

In a Volterra-integral rainfall-runoff model, the correlation distribution for
storm event i, ni(s), ineludes all the uncertainty in the effective rainfall
distribution over R, as well as the uncertainty in the several flow routing
processes, for the given assumptions about the catchment's runoff response. That

is, ni() is a realization of the stochastic process, [n(*)], where
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for storm event i, whieh is an element of some storm class [£2].

Although use of the [n(-}] realizations combines the uncertainties of both
the effective rainfalls and also the channel routing and other processes, Eq. (1)
is useful in motivating the use of the probabilistic distribution econcept in design
and planning studies for all hydrologic models, based on just the magnitude of the
uncertainties in the effective rainfall distribution over R. That is, although one
may argue that a particular model is "physically based" and represents the "true”
hydraulic response distributed throughout the catchment, the uncertainty in
model input still remains and is not reduced by increasing hydraulic routing

modeling complexity. Rather, the uncertainty in input is reduced only by the use
of additional rainfall-runoff data. In Eq. (1), the use of mean value parameters
for the routing effects implicitly assumes that the variations in storm
parameters of [Xj ] and (&jk i are not so large such as to develop runoff
hydrographs which cannot be modeled by & single set of linear routing

parameters on a channel link-by-link basis, for a given storm class.



The Distribution of The Criterion Variable

Let R be a free-draining urban catchment without significant detention
effects (e.g., dams, ete.), nor baseflow, with a single stream gauge and rain
gauge for data analysis purposes. The goal is to develop estimates of rare
occurrence values of a runoff criterion variable {or operator), A, evaluated at the
stream gauge site. Examples of A are the peak flow rate, or a detention basin
peak volume for a given vutlet structure located at the stream gauge. Thus, A is
the peak demand value of a hydrologic variable from a given runoff hydrograph,
evaluated at the stream gauge site.

For simplicity, let all the effects of one year's precipitation be identified
with an annual storm event Pj(-); the underlying probability space is then the
space of all such annual storms. Event Pi(} may have a duration of a few hours
or a few weeks in order to inciude all the precipitation assumed to be of

importance in correlating the event to the stream gauge measured runoff, Qi(*).
The eriterion variable of interest is noted by Aj for annual event i where
A= AQ) 2)
where A (Qj(*)) is notation for finding the peak value of the demand resulting

from the entire runoff hydrograph Qji(), and where each A is evaluated at the

stream gauge site; for example, peak discharge is max (Qj{t): t real) and volume
of discharge is [Qj(t)dt.



The distribution {A] can be estimated from a finite sample Ay, A9, Ag,
and this empirical distribution can be used to obtain the desired T-year return
frequency estimates, AT, of the ecriterion variable where by definition of
exceedance probability,

P(A; > AT) =,—1F, for T > 1 (3)

It is noted that Aj is the peak demand value of the eriterion variable, A, for year
i; and Al is the peak demand of A from arbitrary storm event i.

Sequence of Annual Base Inputs

With only a single rain gauge available, all rainfall-runoff models must
operate on the annual preeipitation events Pi(:}. The notation of "effective

rainfall" will be generated in the following.
Let F be a function on the preecipitation measured at the rain gauge:
F: Pi{*) —Fi(9) (4)

such that Fi{-) is a nonnegative, bounded piecewise continuous funetion of time t.

For example,
t
[
F: Pi(t) —P;2(t); F: Py(t) — | Pils) ds. (5)
s=0
The rainfall-runoff model, M, is used to correlate the synthetic "effective

rainfall" Fi(*) to the measured runoff, Qi{-). Note that F;(*) depends very strongiy
on the mapping F chosen.



Thus for the multilinear rainfall-runoff model, M, the base input, Fi{*}, and
the correlation distribution, n {*), are used to equate with Q(t) by

M: < Fils), ni() > =@l (6)
where Fi(*) must not be strictly zero where Qi{*} is not strietly zero.
Letting {Pi(*}, i = 1,2,~*} be the sequence of annual rainfall events
measured at the rain gauge, then the function F transforms the rainfall data into
the sequence of annual base inputs,

F: { P}, i = 2,2, } —{Fj{*); i = 1,2,} (7)

Bage Input Pesk Duration Analysis
Given the base input, Fi(*), let 1 _ be the operation of locating the §-time
O

interval of peak area in Fi{-}. Then (see Fig. 1)

8
Ig : Fi() —Fp () (8)

where F?('t) =0 foralltd 16 ; Filt) = Fi(t) for t < I.; and where ¢>0. It is
noted that I. is also used as the notation for the peak interval itself.

The contribution to Qi{*) from F?(-) is determined by

[n

F?(t - 8} Ni(s) ds 9
0

Q?(t) =

I
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And the contribution of A; from Fi(4) is

A= (@) (10)



Criterion Variable Distribution

From the above

L
all ‘
A= A L J Fi{t - 5) nils) ds}[ (11)
5=0
and
{ #'t )
A(;: Al l{ F?(T. -s) njls) ds | (12)
L) j
$=0

§ . . 3 .
where Fi() —F;(*) as &% (i.e., as & increases from zero). Then Aj —ai as ot
where reasonable assumptions of continuity of A are assumed. The fact that

8 g . . .
A{ —Aj as Fi(*) —Fi(*) will be used in the following to identify the properties of
the operator, T, which are involved in the estimates of T-year values of the

distribution of annual outeomes, [A].

& Y
The base input Fi(:} is written as the sum of components f‘?(-) and B;Fis(-)
where (Fig. 2)

[

“I(F“f(-)) = é i[ F?(s) ds =21 | Fyfs) ds, (13)
J
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Fi(t) ={ (14)
|
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0, otherwise
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From Eq. (13), T-year return frequency values of I(F?(')) are denoted by Iy,
where (see Fig. 3)

PFI() 2 TP = & (16)

We are interested in the "average shape' of the base inputs which have, for
a given { 5 th same total mass of input. To proceed, the entire collection of
realizations Fi(-) are translated in time to begin at a reference time t = 0. Thus
each F'?(') is zero except {possibly) for time 0 <t < §. Given peak duration time
inerement &, the F?(') are further categorized according to similar total mass.
Thusly, aithough several Ffis(') realizations have similar total mass, they differ in
their time distributions of mass. We want the expected shape of the :lF%G) in
each grouping of similar mass and define

B0 =& { ar0 | TEf) =T | an
i , Q X X
it is recalled that in Eq. (17}, each D.Fj(-) has been translated appropriately In
time (Fig. 4), and the expectation is taken with respect to time, t.
] 5
Define € i{t) by
¢S = AFAD - EXD (18)

§ .
where £ {(t) is the variation in base input shape about the expected base input
shape of all base inputs with the same mass {approximately) as Fi*), (Fig. 4).



Then in summary, with all components appropriately translated in time,

[ \
ey = J [Fﬁs)+5§(s)+ e?(s)J nilt - s) ds (19)

where ?}O(') is the mean intensity of the base input, F?(-), over the time interval
0 <t <3 (where F?(-) has been translated to begin at time t = 0); E’?(-) is the
expected shape of all Eossible § -interval peak durations of base inputs with the
same total mass of Fcf(-); e(is(-) is the variation of AFi{*) about the expected
shape, E?(-); and ni(-) is the necessary multilinear model correlation distribution
for the parent annual event Fi(), in some storm class [£,].

Estimation of T-Year Values of The Criterion Variable

For each peak duration, I , the samples of F-?(-) (see Eq.s (14) and {15)) are
now analyzed to determine the underlying distribution of the annual outcomes of
the values, T(F?(-)). From these distributions of mean intensity of I base inputs,
T-year values, Tr% of the T(F® () can be derived (Fig. 3) and the unique T-year
Fr{+) defined by:

TN =15 (20)

-8 -5
Given Iy, Fp{*) is defined and also both the corresponding Er?'(-) and the
distribution [€ r(1Sr-(°):|. The "T-year [, base input", S%('), is defined as

S3() = FR0) B (21)



Fig. 5 shows a set of S%(-) for T =100 years, and various &, using the data from
Southern California. The T-year I base input, S7(*), varies in both shapg and
mass as either T or § varies. The distribution [QU(-}] of realizations of Qj{*} is

now written

t

[Q° )] = 1{ [F%sh Eps) + [epds)] } [nglt-5)] ds (22)

siO

where in Eq. (22}, return frequency, T, is allowed to vary as a real valued
positive (nonzero) random variable; and [ nz(-) ] is the distribution of
realizations, n {(*), when the parent Fi(*} c [£,], {that is, there may be several
correlation realizations associated to the single realization of Fi{*)). The
distribution [Er%(')] follows from Egs. (17), (18), and {20},

Combining Egs. (21) and (22),

t

[Q°(] = J [S.-i.(s).;. [e,?(s)] } [ny(t -8)] ds (23)
s=0

and, for operator A, Eq. (23) is used to provide the frequency distribution,

(a1 =4lQ%0 ] (24)

Figure 6 shows(sa flow-chart which implements the procedures leading to Eq.
(24). Because Aj —Aj as &4, then necessarily [A ] —[A] as &+,



T-Year Estimate Model Simplifications

Equation (23) ean be eonsiderably simplified if it is assumed that

fa®1s ATEQS () (25)

in which case E[ ?-%(*)] =0 and E{N,()] = N,(), and Eqgs. (23) and (25) can be

combined as
t

}
| (26)
)

5
[A[S] = A [ [ Stlt - s} Nyls) ds
s=0
where T is the annhual series random variable. [f furthermore it is assumed that
the storm classes of base input, [z z], are highly correlated to T-year values of

base input mean intensity, then storm classes of T-year base input can be
defined, [ £ 1], EqQ- (26) becomes

t
8 &
[A°] = A S7(t - s) npls)ds (27)
J
5=0
where T varies as an independent random variable. Finally, if it is assurned that

the T-year value of [A 6] monotonically increases as T-increases in Eq. (27},
then the T, return frequency value of A is

t
3

8 |
ST, (t-¢) nT,(s) ds f, as &4 (28)
0 J

ATO - m%x A[

5

Yy

where nTo(') is the expected realization of a multilinear surface runoff model
response [n(-}] corresponding to storm class [£T]. Equation (28) is a form of
the well-known design storm single area unit hydrograph procedures {e.g.,
reference 1).
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Duration, S.




Iy

FREQUENCY

FREQUENCY

T

| [
{HOURS) {(HOURS) (HOURS)
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