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Computer Interaction and the CVBEM in
Engineering Design
Theodore V. Hromadka IT

California State University, Fullerton, California, 92634
US4

and Williamson and Schmid, Irvine, California, 92714, USA

INTRODUCTION

The Complex Variable Boundary Element Method or CVBEM has
been shown to be a useful tool for the numerical analf(sis af Laplace or
Poisson equation boundary value problems (Hromadka'). The numerical
procedure Is to diseretize the boundary T by nodal points into boundary
elements, and then specify & continuous global trial function G(z)} on T as
& function of the nodal values, Using the Cauchy integral, the resulting
integrel equation is

. 1 [G(c)d;
w{zo) = — - (1)
Zm'J r-2,
T

where a?(zo) is the CVBEM approximation for zg e {; and £ is a two
dimensional simply connected domain enclosed by the simple elosed
conttour T.

Beeause Gz} is continuous on T, then 4(z) is analytie over {! and
can be rewritten as the sum of two harmenie functions

@z} = §(z) + p(z) (2

Thus both $(z) and @(z) exactly satisfy the Laplace equation over £,

Approximation error occurs due to &(z) not satisfying the boundary
conditions on I exactly. However, an approximate baundsry T can be
developed (by trial and error) which represents the location of peoints
where ({z) does equal the specified boundary conditions such as level
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curves {see Figure 1. Cons=czaniiy, the CVBEM aspproximation error
ean be interpreted £s z trezsfsrmation of I T where the ultimate
objective is to have I coident with T, Because all the error of
approxlmatlon is due 15 e meorezet boundary element trial funetions,
accuracy is increasel v oz :4Zzon of boundary nodal points where
approximation error is izrzz "z, zZantive integration).

In this paper, & poopirer Sizractive techaique is reported which
graphically displays T ==Z T s Tz1 the numerical analyst can readily
specify additional n:r:':j x'_z 2= the CRT sereen. In this fashion, the

example, the tolere.:c- the allowable construction limits
specified for a shaft {torsion x2zl23) for use in aireraft design.

As T approaches 7 geszzxizally, the analyst is assured by the
Maximum Modulus Theo : ihe maximum apprommatlon error
oceurs on [ and that t5e sove—ing cartial differential equation {Laplace)
is solved exaetly. ConssgnecTs, e {inal product is the exact solution
for a problem geomet-v whiet = W iiin the construction tolerance of the
design,

THEORETICAL BACECGROTS ™ F THE CYBEM

A complete pre_-'*"*z.r =7 =& CVBEM development, case studies.
mathematical preoofs ! =cxvezinee and .ﬂ.}(lstencei and severa’
FORTRAN computer progre—s =z ziven in Hromadka *. In order tz

develop the geometric inisrzr=izTn of medeling error associated with
the approximate bounczry exae-s z brief development of the CVBEM
numerical technique is presez=Z = <he following,

Let { be a simply eonn=w.=” T o-dimensional domain (i.e., no holes
within ©) enclosed by 2 sizziz #iosed contour T (e.g., Mathews 3). Let
¢lx,y) be a two~dimensionel Tar— =~7e function over S1UT; that is,

%o(x.y)  alay: _
+ = T, lx,y) €RUT 3
ax2 Tyt

Then there exists & smoly wmroeried domain ©F such that RUT is a
proper subset of 8 ané Ax,¥: = Zzronie over ¥,

There exists a harmone orZon $x,y) conjugg}e to ¢(x,¥) whicn
also satisfies the Leplece 2cus=ion of (3) over @7 and additionally
satisfies the Cauch-Riemsen e Ztoes of

b (x,y} aplx,y}  ziz,sl 3p(x.y)
- : = - - (x
X 9y v ax
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Let z = x + iy be & complex variable aver 0%, Then both ¢{x,y) and ¥(x,y)
can be written in terms of ${z) and ¥(z} such that an analytic function
wlz) is defined over " by

w(z) = ¢(z) + iv(z) (5)

where to simplify notation, (5) ean be rewritten as w= ¢+ iy, 2 ¢ oF,
Equation (5) represents a relationship between two cenjugate
harmonic functions generally cailed the potential {¢) and siream
funetions {¢). A lst of typical potential and stream functions which

oceur in engineering and physies is given in Table 1 (Mathews 3y,

TABLE 1. POTENTIAL AND STREAM FUNCTIONS

Physical

Phenomemon ${%,y} = constant P(x,y} = constant
Heat flow Isothermals Heat flow lines
Elecirostatics Equipotentials Flux lines

Fluid Flow Equipotentials Stream lines
Gravitational field Potentials Lines of force
Magnetism Potentials Lines of force
Diffusion Concentration Lines of force
Elasticity Strain Stress lines
Current flow Potential Lines of foree

The Cauchy integral theorem equates values of w(zy) for z5£8to a
line integral of w{g) for el by

13 w(z}dg
—_— (6}

wlz ) =
" oni r-z
T

To illustrate the development of g CVBEM spproximation functmn, w(z),
consider w(z) to be defined over §' with SUT interior of ¥, Subdivide T
into m boundary elements T'j such as shown in Figure 2. Nodal peints are
specified at each element ‘endpoint (here, & linear polynomial CVBEM
approximation is being developed). At each node, determine nodal values
of w(z) by

(2 ) =W (2 )'i"llp(z ) ¢j‘?il{1j;j=1,23‘“,m (7}

Then & global trial function of w(z) is determined for zeT by
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m
Gz} = jgl 6.]- EUJJ NJ-(Z) + '-Uj+1 Nj+1(z)] (8)

Where the Nilz) are linear basis functions {see Figure 3}; and &; = 1 for
z €Ty, and 85 = 0 for =z 4 T3, Substituting G(z) in place of w{Z) in (6)
determines a' CVBEM appreoximation &(z) of w(z)

. 1 &(g)dg
w(z) = — - )
27 -z
T
Letting |[i;, || = max }Zjﬂ - Zjl, j=1,2,-~,m, then it is seen {without
proof} that :
Hm B(g) = wig), el (10)

it >0

and therefore

. . . I [ {wlz)-6{z))dg
Tim (wlz}-2{z)) = 1im 5 =0 (11
110 1T {120 <~z
Thus the error of approximation, e{z}, is defined by
1 {(w{z) - 6(g)}dz
e(z) = — [ ——rv— (12)
27 -7

Because G(7) is continuous on T then tT){Z)AiS analytic over { which
implies both $(z) and {{z), where &(z) = ¢(z) + idl(z), are potential
funetions over {2,

In practice, ¢{z) is known on Iy and w(z) is known on a separate
contour on T, where T = Ty UTy. Thus w{z) is not completely defined
without estimates for the unknown nodal values. To cobtain such
estimates, the real (or imaginary) parts of &(z) are collocated to the m
known neodal values, resulting in m equations for the m unknown nodal
values. Using these m nodel values estimates along with the m known
nodal values supplies the &(z) integral function with sufficient data to
determine the CVBEM approximation of (9.



Stress Analysis 397
CVBEM APPROXIMATION ERROR

Generally, numerical approximation errors in solving potential
problems are .of two forms: (i) errors due to not satisfying the governing
equation over (i, and {ii) errors due to not satisfying the boundary
conditions continuously on I'. For the CVBEM, (and for other boundary
integral equation methods), the first type of approximation error is
eliminated due to both ¢ and ¥ being potential functions. But w{z) does
not usually satisfy the boundary conditions cortinuously on T (if it did,
then ®{(z} = w(z)). The next step in the CVBEM analysis is to work with
@(z} in order that o{(z)+w(z).

This step in the analysis of approximation error provides a
significant advantage over domain numerical methods such as finite
elements or finite differences. 1In the domain methods, the analyst
examines error with a form of sequence Cauchy convergence criteria by
arbitravily increasing the domain nodal densities and comparing the
resulting change in estimated nodal values. Whereas with the CVBEM,
the analyst has several forms of the approximation error to work with
(Hromadka 2), Probapbly the easiest form of error to study is the
development of the sapproximate boundary T which represents the
locations where w(z)} achieves the desired boundary values of w(z).
Generally, the boundary conditions are constant values of ¢ or ¥ along
boundary elements, t.e., ¢ = ¢j for 2 eljor ¥ = Y, for €Tk, This set of
m nodal values {¢j,tbk} are level curves of w(z). The approximate
boundary T is determined by locating those points where ¢ = ¢: and
{ = {see Figure 1). Due to the collocation process, T interseets T at
least at each nodal point location, zj, j=1,2,,m.

To determine T, each element Tj is further subdivided by interior
points (specified by the program user) where w(z) is to be evaluated. At
each element interior point, w(z} is caleulated from the line integral of
(9) andthe values of § and i are determined., If the appropriate ¢ {or 1)
matches the boundary condition on T3, then T intersects I'at that point.
Otherwise, subsequent points are evaluated by marching pointwise along
a line perpendicular te Tj until the boundary condition value is reached.
_ Por point locations interior of 2, eq. (9) is used. For peints exterior of
QUT, an analytic continuation of (9) is used.

In this fashion, & set of points are determined wheve &(z) equals the
desired ¢j or Y| values. The contour I' is estimated by then connecting
these points by straight lines. Because [ -and T interseet at least at
nodal peint locations, T appears as a plot which osecillates about the T
contour.

COMPUTER INTERACTION FOR ERROR REDUCTION

A procedure to use & graphieal display for evaluating the CVBEM
model is to display both T and T superimpgsed on the CRT. By
magnification of the departure between T and T, the analyst can easily
inspect the performance of the CVBEM approximation. Because the
approximation error is due to the assumed basis function assumptions,
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the integration error is reduced by the addition of nodal points on T,
similar to an adaptive integration technique.

The eddition of nodal points can be made directily via the CRT
secreen and & "locating the closest boundary eoordinate" computer-
graphics subroutine. After the nodal additions are completed, a new w{z}
is determined and the revised I' plotted on T. By the addition {and
deletion) of nodal points from T, the analyst is able to quickly evaluate
the quality of the CYBEM model. Because the addition of a nodal point
can be interpreted as the addition of an approximation error sink term,
the geometrie representation of error by means of T provides s
mathematically sophisticated yet easy-to-use modeling tool.

CASE STUDY

To illustrate the previous discussion, a computer-interactive
version of the CVBEM for solving petential problems in two-dimensional
domains as developed by ADVANCED ENGINEERING SOFTWARE
{Irvine, California) is considered.

The test problem considered is the development of a CVBEM
approximation function for the two-dimensional domain shown in Figure
4. This example represents any number of possrble engineering problems
such as listed in Table 1,

The objective of the analxsm is to locate a sufficient number of
CVBEM nodal points on T until [is within an aceeptable tolerance of T
Cenerally, this tolerance is the allowable limit of deviation from the
design for eonstruction purposes.

Using symmetry, the domain of Figure 4 is reduced to the domain
of Figure 5. The purpose of using symmetry is to reduce computational
effort and computer memory requirements. Because the CVBEM is a
boundary integral methoed, all nodal valies are linked together restlting
in a square matrix. Consequently the use of symmetry to reduee the
problem size, or even to use the computer-interaction approach rather
than a brute force computer-generated nodal distribution on I', saves
considerably on computational requirements.

Figure € shows the first attempt at modeling the domain of Figure
5. Because of the nature of the spproximate boundary concept, the
boundary eondition values of constant ¢ (or ¢} stepwise along T are of no
real consequence., However, for the reader's convenience, the boundary
conditions are also shown in Figure 5.

Figure 7 shows the overlay of T and T for the nodal distribution
used in Figure 6. The modeler locates additional nodes for subsequent
tries based on the largest departure between [ and [, After four
attempts, the CVBEM modeling error is represented by I' as shown in
Figure 8. It is noted that in Figure 8, departure is magnified ten-fold for
visibility. = As discussed previously, if the T is aceeptable for
construction purposes then the associated w{z} is tl%e exact solution of
the boundary value problem with T transformed into
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SOFTWARE PACKAGE DESIGN

Both minicomputer and microcomputer versions of the diseussed
CVBEM technique are available. Consequently, the software structure
for an Apple II E 64K microcomputer will be presented only,

The reported CYBEM computer interaction program is subdivided
into three large legs where each leg eontains the main driver program.

The program package is composed of
(i) CVBEM approximation program (to determine nodal
estimates)
(ii) CVBEM approximator evaluation prograimn (to evaluate any
i3(z))
(ili) Approximation boundary determination pr-gram to determine
{x,y) coordinates where w{z) equals the boundary condition
level curves
{iv) 1line drawing graphies program to plot {x,y} pairs for both T
and T onte CRT (or plotter)
{v} Nodal point (x,y) data entry routine
The microcomputer programming is structured as, shown in Figure 9.
From the figure, disc storage is used to store T related {x,y) pairs,
otherwise, computer memory is used for nodal point coordinates.

CONCLUSIONS

The CVBEM has been used to determine highly accurate solutions
for two-dimensional potential problems. In order to achieve a high
degree of aceuracy, a computer interactive graphies technique is
reported which utilizes the approximate boundary technique to display
the CYBEM modeling error as a result of the nodal point distribution
selected by the analyst. Subsequent nodal point locations can be added
{or deleted) by direct interaction with the computer program via the
CRT. The only programming requirements needed to implement this
easy-to-use analysis approach with the CVBEM is a standard CRT line-
drawing graphies package, and a "locating a point to the closest contour”
program routine.
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Figure 1. Level curves of an analytic funetion (example shown: wiz) = z).
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Figure 2. Modeling I' by boundary elements T'j.
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Figure 3. Linear basis funetion.

Figure 4. Example problem geometry.
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Figure 5. Simplified problem geometry.

Figure 6. CVBEM nodal disteibution for ezample problem,



Stress Analysis 403

Figure 7. Approximate boundary {dashed line for first attempt using
CVBEM).

r—— ——— — ——
oy

Figure 8. Approximate boundary (dashed line) after four attempts using
CVBEM (departures between T and I' are magnified ten—fold).
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Figure 9. CVBEM computer-interaction program structure schematie.



