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Evaluating Uncertainty in Design Storm Runoff Predictions
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The use of a given effective rainfall and a stochastic integral equation formulation of the well-known
unit hydrograph method gives criterion design variables, such as volume or maximum discharge,
which are random variables depending on the stochastic variation in the unit hydrographs. When this
variation is modeled by means of a multivariate normal distribution, it is possible to compute the
distribution of criterion variable values. For example, the total runoff volume can be shown to be
normally distributed, and so confidence intervals for this design variable can be directly obtained.
Note that this probability distribution is for a fixed design storm and is due to the multivariate normal
variation in the unit hydrograph. A computer simulation can be used to obtain confidence intervals for
the maximum discharge estimate. Similarly, probabilistic simulation can be used to develop confidence

intervals for other criterion variables.

InTRODUCTION

The unit hydrograph method is a widely used rainfall-
.runoff modeling technique. For a single subarea model, in
" general one selects a method of producing effective rainfall
* (from the assumed storm rainfall), and a transfer function (or
funit hydrograph) for the catchment. Hromadka and Whitley
£[1988, 1989] show that multiple subarea models with routing,
feach subarea having its own transfer function, can also be
put into the form of a single subarea modef, and so the modef
studied here is of broad applicability.

There are several situations in which the transfer function
ifor the catchment should be regarded as stochastic. For
 example, the catchment of interest may be ungauged. In this
‘._case one can use unit hydrographs (i.e., transfer functions)
for several different catchments which are considered to be
‘hydrologically similar to this catchment, scale them using
.catchment characteristics such as lag and ultimate discharge,
-and averaged the transfer functions to obtain a ‘‘regional-
ized” transfer function. Using this averaged transfer func-
tion and the selected effective rainfall model, a criterion
_ variable, for example, peak discharge, can be computed for
the considered rainfall. But the single number for peak
discharge so obtained does not reflect the uncertainty which
arises from averaging transfer functions from other catch-
ments. It can be plausibly argued that the “correct’’ transfer

. function for the catchment could be any of the transfer
functions used to develop the average. From this point of
view, the transfer function is, say, equally likely to be any
one of the transfer functions from the other catchments, and
this randomness in the transfer function creates a random
variation in the calculated peak discharge. For an example of
this approach see Hromadka et al., [1987]. This situation can
be modeled by supposing the transfer function to be a

!Also at Department of Applied Mathematics, California State
University, Fullerton.

Copyright 1991 by the American Geophysical Union.

Paper number 91WRQ1626,
043-1397/91/91 WR-01626502.00

stochastic process for which a certain number of realizations
are known, and that are equally likely to occur.

As another example, even if the catchment is gauged and
the transfer functions have been computed for several large
storms (i.e., for a given storm class [Hromadka and Whitley,
1988, 1989]), variation will still be found among these trans-
fer functions. There are numerous sources of this variation,
but a major source is the spatial variation of storms [Hro-
madka and Whitley, 1988]. Since what is known are the rain
gauge data, using these as input to the effective rainfall
computation in the model amounts to assuming that this
rainfall measured at the rain gauge is uniform over the
catchment. Because storms are generally far from uniform,
the runoff hydrograph obtained represents only a statistical
correlation between the rainfall and runoff data. As an
analogy, consider the problem of linear regression. It is
supposed that y = mx + b holds exactly, but actual
observations give x and y + &, where & represents a
deviation from the true value due to error. In a similar way,
the transfer function for the catchment can be modeled as a
stochastic process, which can be thought of as the true
transfer function plus a stochastic process expressing the
error in any particular realization. Note that linear regres-
sion contains the assumption that the form of the true
relation between x and y is known (i.e., y = mx + b),
whereas no such assumption concerning the form of the
transfer function has been made. The data of the example
which will later be analyzed consist of 12 transfer functions
which are based on 25 significant storm events at seven
different sites in Los Angeles County, California. From the
point of view of the statistics of the process, at a fixed point
in time only 12 values of the process are known, from which
no accurate statistical conclusion can be drawn. A further
analogy with linear regression is appropriate: It is often the
case that only a few pairs of data points (x, y) are known,
and to discuss the random variation in the linear regression
maodel, for example, to give confidence bands about the
regression line, it is assumed that the errors ¢ are indepen-
dent and normally distributed with mean zero and a standard
deviation the same for all x. In most practical situations
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these assumptions, including that of normality, are beyond
testing. (There is a useful discussion by Breiman [1973] of
some possible tests of the underlying assumptions in linear
regression. To give an idea of the numbers involved in
testing distributions, to distinguish between a normal N(0,
1) distribution and a distribution uniform on (—V/3, V/3), at
merely the 10% confidence level, requires at least 130 points
using the good Kolmogorov-Smirnov test [Breiman, 1973].
To distinguish between distributions closer in shape to the
normal or at higher levels of confidence requires many more
points.) As in the case of linear regression, one may argue
heuristically, noting the central limit theorem, that errors
tend to be approximately normally distributed. But finally,
one proceeds-in the hope that statistical insight based on
uncertain assumptions is better than no insight.

In comparison with linear regression, modeling the trans-
fer stochastic process is much more difficult. First, the form
of the transfer function is not known. Second, that portion of
the error process which is caused by nonuniform rainfall will
change slowly with time, and so the errors at nearby times
will be correlated and not independent. A multivariate
normal model allows for these dependencies and is one of
the few multivariate models in which basic computations can
be made, and as such it is the first model to explore.
Therefore it is with a mixed sense of desperation and hope
that the multivariate normal model is adopted in this paper.

DiscussioN OF THE MODEL (STOCHASTIC
INTEGRAL EQUATION METHOD)

We consider a variant of the unit hydrograph method
which relates the effective rainfall realization ¢( ) and the
discharge Q( ) via the stochastic integral equation,

o) = f e(t — s)n(s) ds (1)

0

where n( ) is a realization of a stochastic process distrib-
uted as [¢( )] [Hromadka and Whitley, 1985, 1989].

Our analysis begins by dividing the study time interval [0,
T] into N equal subintervals I, = [t,_, t,), with ¢, =
nT/N forn = 0, 1, --+, N, and approximating e( ) by a
step function with the constant value e, on the interval [,,.
Letting y[a, b) be the characteristic function of the interval
[a, b) defined by

X[a.b)('t):l ast<b

X[a, »)(f) = 0 otherwise

e( ) can be written

N
et = 2, enxrn(l). (2)

n=1

In the same fashion, approximate the realization n( ) from
[n( )] by a function with constant value 7, on the interval
I,. Substituting these approximations for e( ) and 7( )
into (1) gives

N

0(1) = 2, e[St —t,_1) = St t,)] 3)

n=1
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where S(¢) is the S graph

S@t) = f’ i),

0

Thus Q(t) can be seen to be continuous and piecewise linear,
with the derivative Q'(r) taking on a constant value, say g,
on the interval I,.

To determine the values {g/,}, differentiate (3) and choose
t to be a point in I, for n = 1, 2, -+, N, giving N

equations:
gr=e;(n;— ngp
qGr=e(n2—my) +exn; — myg)
- (4)
ay=eilqn—my-1) texlny_; ~my-2)
& e eyl — el

where my = 0 is used in the formulas for symmetry. These
equations can also be rewritten in the form:

g1 = (e; — eg)ny
g2=(ez—en + (e; — e
(5)
gy=(en—en-1)n +(ey—1 —exy-2)m;

oot ey~ eq)ny

with eg = 0.

The problem of modeling the statistical variation in each of
the parameter sets {g', -, ¢} {1, *-+, nn}, and {e;,

-, ey}, can be considered for various cases; the one
which we will consider here is where e( ) is a future storm
event; e.g., it is a given design storm effective rainfall. Even
for an idealized set of effective rainfall events with identical
patterns and magnitudes at the rain gauge, there would still
be variations in the effective rainfall over the catchment,
which would yield observed variations in the associated
O( ), and thereby variations in 5( ). Consequently, there
would be one realization, n( ), for each data pair of {e( ),
Q( )}. Because of the random variations in the effective
rainfall over the catchment, and the many random processes
occurring in any hydrologic rainfall-runoff model such as
errors in measurements and errors in computing runoff,
7( ) is a stochastic process.

Each value 5, of n( ) on the interval I, is itself a random
variable and so the vector € = (n, -+, ny) is a multi-
variate random variable. Moreover, for small time intervals,
say, unit periods of 5 min, there will be some dependence
between the values of n( ). This important mutual depen-
dency in the set of components of € makes the problem of
probabilistic modeling much more difficult. With no strong
evidence to the contrary, an appeal to the central limit
theorem for multivariate random variables [Breiman, 1968;
Billingsley, 1986] suggests that € can be modeled with a
multivariate normal distribution. And, in fact, this distribu-
tion is one of the few multivariate distributions which is
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simple enough to allow basic calculations to be made and yet
which allows dependence between components.

As (5) indicates, g/, is a linear combination of components
of €. By a known property of multivariate normal distribu-
tions, this implies that Q' = (g}, *-+, gl) is also a
multivariate normal [Kendall and Stuart, 1977]. Conversely,
by solving (5), if Q' is a multivariate normal then so is €.

A useful fact is that a multivariate normal distribution X =
(X, -+, Xy) is completely determined by its means and its
covariance matrix y; = E[(X; — u;)(X; — w;)], where y; =
E(X;). In fact, in the (usual) simplest case where the
covariance matrix I' = [y;] has an inverse A = [a;], the
density function of X is

N
[@m)" det ()] P exp | —0.5 2 ay(xi— u)
i,j=1

s X e ()

Consequently, this density can be estimated by estimating
the covariances and means.

Thus under the model assumptions that either & or Q' is
multinormal, the other is also multinormal, and therefore
one distribution can be estimated by using (5) and estimating
the covariance matrix for the other distribution.

We will use this technique to study the statistical proper-
ties of predicted Q( ), which are a consequence of the
statistical properties of é and the choice of design storm
effective rainfall e( ), and so will be able to study some of
the statistics of the stochastic integral equation representa-
tion of the unit hydrograph model under assumptions which
allow realistic dependencies between random components of
the processes. '

CRITERION VARIABLES

As an example of a runoff criterion variable, consider the
total volume of runoff, V. The trapezoidal rule with partition

points g, £y, * * * , I is exact for the piecewise linear Q and
gives
N
V=2 [0 1) + Qtp)2. (M
k=1
Since

k
Ot = (8) X, q; Q) =0

i=1

(8)

where & is the width T/N of the intervals, I;, V is seen to be
a linear combination of g%, g4, ** -, q'y, and therefore is
normally distributed. Hence to find confidence intervals for
design values of V (which is a prediction of the random
variable V given a future effective rainfall), the ordinary
statistical methods for a normally distributed random vari-
able apply. Ordinarily, one would expect the (total) volume
V to merely equal the volume of effective rainfall because
the usual definition of effective rainfall is that rainfall which
does run off the catchment. Here, V is a random variable for
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several reasons: (1) The average transfer function mg is
usually scaled so that it passes through exactly the volume of
*‘effective rainfall’’; here we see the results of using 7 + ¢
for various error terms &. (2) ‘‘Effective rainfall” usually
means rainfall less losses, and in that case the volume of
runoff is the volume of effective rainfall. Here, as in the work
by Hromadka and Whitley [1989], effective rainfal is
thought of as some function of precipitation measured at the
rain gauge, from which one tries to predict criterion vari-
ables, such as peak discharge. From this point of view the
“‘effective rainfall’” may best predict peak discharge without
necessarily having the volume of rain over the catchment
agree with the volume extrapolated from the rain gauge data.
(3) The volume V is taken over the time interval [0, T1],
which does not necessarily exhaust the runoff.

Note that the variation in V, which is characterized as
normal, is that produced by a fixed given design storm and a
variable set of n( ) used in the stochastic integral equation
formulation of the unit hydrograph method. This is distinct
from the variation in V which would be found in runoff
volume data from a specific catchment (should such data be
used directly); rather, this observed variation is, to a large
extent, due to the spatial variation in the effective rainfall
over the catchment with respect to the assumed effective
rainfall, among other factors. (As in many applications of the
normal distribution, this model is not perfect in that it
predicts discharge with negative volumes, but this is only
with insignificant probability for typical observed values of
V and their standard deviations.)

A criterion design variable of great interest is the peak
flow rate. Unlike the case of the total volume of runoff, for
the peak flow rate there is no simple derivation of its
distribution. To analyze a specific case requires a statistical
simulation.

Consider a set of n( ), each approximated by constants
on the time intervals /, as was done following (2). On each
interval I, the values 7, are normally distributed, but that
information alone is not enough to determine the joint
distribution of the n( ) because of the dependence between
values on different intervals. The values {Q(¢;)}, among
which the peak flow rate is to be found, are each a linear
combination of 7, 77, ***, my since, as was noted in (8),
they are linear combinations of g, * * *-, ¢’y which, from (5),

are in turn linear combinations of 7y, - -+, Ny:
N 3
Q) = 2 bym; ©)
i=1
where b; are to be determined. The 7y, * - - , ny Will now be

regarded as random variables, and we note that

N
E(Q() = 2, byE(n)),

j=1

so that if we subtract the expected value from each 7; this
will subtract the expected value from each Q(t;) and

N
O(1) — E(Q(t)) = 2, bi(n;j— E(nj))  (10)

i=1

Consider the random variables
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Xi=Q(1;) — E(Q(1) (11)

These have a multivariate normal distribution and each has
an expected value of zero. The covariance matrix C for these
X! st XN:

C = [Cov (X;, X1 (12)

is symmetric and semidefinite. If positive definite, it has a
Cholesky factorization into

c=LLT (13)

where L is lower triangular and L7 is the transpose of L; and
it also has this factorization after the appropriate inter-
changes, which we will suppose to have been made, it it is
only semidefinite [Wilkinson, 1978].

If we take Z,, Z,, ---, Zy to be independent normal
N(0, 1) random variables, and Z to be the column vector
(Zy, --+, Zy), then it is easy to compute the covariance
matrix of LZ and show that it is the matrix C:; The covari-
ance matrix of LZ is E(LZ(LZ)") = C, because E(Z,Z;) =
0 fori # jand E(Z?) = 1. (This well-known fact is the basis
for the characterization of zero mean multivariate normal
distributions as being those whose components are linear
combinations of independent N(0, 1) normals [Breiman,
1968].) Since the multivariate distribution of X, - -+ , X is
determined by its covariance matrix, the X values can be
simulated, if we know their covariance matrix, by simulating
the Z values [Maindonald, 1984]. )

For the set of n( ) discussed below it was found that the
peak flow rate occurs in only a few unit intervals, and from
hydrological and statistical considerations it is unlikely that
the maximum falls too far outside these few time intervals in
general. So only a small number X,,, X .1, ", X,,4, of X
values need be considered, which considerably reduces the
complexity of the model.

ExaMPLE: COMPUTER SIMULATION FOR PEAK
FLow RATE

In the example case study considered, 12 samples n( )
were obtained from catchment rainfall-runoff data (see Fig-
ure 1), each consisting of 25 unit values of flow rate (based
on the 5 min time interval). These values of flow rate are
assumed to be samples from a multivariate normal distribu-
tion. Additionally, all the n( ) were obtained from storms
which are considered of similar severity (i.e., in the same
storm class; see [Hromadka and Whitley, 1989]). The unit
flow rates were visually compared with simulated values
from a multivariate normal distribution as a rough check;
because there are so few sample points, a more discriminat-
ing test is not feasible. The design (i.e., future) storm
effective rainfall was taken to be linear increasing from 0 to
5 inches/h (0-12.7 cm/h) at 1.5 hours, and then linear back
down to zero at 3 hours, and this storm was approximated as
piecewise constant in consecutive 5 min time intervals. The
criterion variable of interest is the peak flow rate anticipated
from the assumed design storm effective rainfall.

From a calculation of the unit flow rate values for each
7( ), it can be seen that the peak flow rate falls into one of
the three unit time intervals [135, 140], [140, 145], and [145,
150] (time given in minutes).

The computer simulation procedure continues, as dis-
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Fig. 1. Plot of n( ) samples using model of (1) (5-min unit

periods of flow rate). Flow rates are in cubic feet per second (1 cubic
foot equals 2.8317 % 1072 m?).

cussed above, in that the covariance matrix of the Q(z;) is
computed. Then a subset of the X; is chosen; for example,
the subset {X,g, X9, X3¢} corresponds to the three intervals
in which the peak flow rate occurs. Then the covariance
matrix for this subset of X is factored into a product of a
lower triangular matrix L and its transpose. It is now only
necessary to generate independent N(0, 1) random vari-
ables, use L, and add on the estimated means of each X, in
order to develop one vector of flow rate values for the time
intervals chosen. From the vector of flow rate (Q) values,
the maximum value of Q is obtained, resulting in one sample
point in the simulation of maximum Q values. The program
does this repeatedly, and keeps track of the empirical
distribution of the maximum Q (i.e., the criterion variable).
As a final result, one obtains an estimated distribution of
percentiles 5%(5%)95% for the maximum Q based on the
subset of unit time intervals chosen.

For the given data set, this calculation was performed for
the single unit value X,g, for {X,;, X5, X2}, and on up to
{X24, ==+, X34}. The outcome was that all the percentiles
were the same for these different subsets of X values to
within a few cubic feet per second (see Table 1).

There are two reasons for this simple outcome. The first
reason is that, as a cursory inspection of the data show, the
maxima tend to fall in a narrow range of time intervals and
for those intervals the Q values have approximately the
same means and standard deviations. The second reason
depends on a less obvious property of this multinormal Q
distribution, namely, that when the covariance matrix is
factored into LLT, L puts most of its weight into one Z
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TABLE 1.
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Peak Flow Rate Percentile Estimates for Various Unit Period Sets

Unit Period 29 Unit Period 28-30

Unit Period 27-31 Unit Period 24-34

Percentile Max @, cfs Percentile Max Q, cfs Percentile Max Q, cfs Percentile Max Q, cfs

5 299.66 5 302.51
10 323.41 10 325.00
15 339.77 15 339.83
20 352.68 20 353.80
25 364.69 25 365.16
30 374.81 30 375.17
35 384.21 35 384.45
40 393.20 40 393.79
45 401.69 45 402.98
50 410.50 50 411.40
S5 419.52 55 419.89
60 428.26 60 428.58
65 437.20 65 438.17
70 446.64 70 447.74
75 457.00 75 458.44
80 467.99 80 470.73
85 481.56 85 484.81
90 498.22 90 501.35
95 522.11 05 526.59

5 301.37 5 300.70
10 324.66 10 323.78
15 339.92 15 341.29
20 353.25 20 354.36
25 364.03 25 365.34
30 374.32 30 375.89
35 383.86 35 385.36
40 392.84 40 394.44
45 401.73 45 403.70
50 410.28 50 412.25
55 419.05 55 420.45
60 427.92 60 429.59
65 436.55 65 438.05
70 445.97 70 448.12
75 456.41 75 458.21
80 467.01 80 469.53
85 480.73 85 483.07
90 496.99 90 498.99
95 522.59 95 525.46

1 cfs (cubic foot per second) equals 2.8317 x 1072 m?.

variable. For example, Table 2 provides the factorization for
the subset {X,7, * -+, X1;}.

The significance of this result is that, for these data,
satisfactory confidence intervals for peak flow rate can be
obtained merely by choosing the most common interval in
which the 12 data peak flow rates occur, and then supposing
those data to come from a (single) normal distribution. Of
course, for other criterion variables the resulting distribution
need not be even approximately normal, e.g., peak flow rate
if the effects of a flowby retarding basin were added to the
simulation.

Discussion

The previous example problem focused upon the runoff
criterion variable of peak flow rate. The above methodology
can be applied to any criterion variable, A, to develop the
probability distribution of [4] by [A] = «4[Q?( )] where
[Q‘D ()] 1is the stochastic process of realizations of possible
runoff hydrographs, OP( ), for the assumed design storm
effective rainfall, and s is a functional which operates on
each sampled runoff hydrograph realization to develop a
sample point of A.

The multivariate normal distribution, as applied to the
sampled n( ) obtained from rainfall-runoff’ data using the
model of (1), provides an estimate of the underlying proba-
bilistic distribution of that stochastic process, which is
distributed as [n( )]. Consequently, even though only 12
samples (realizations) of the = are obtained by data analysis

using (1), the distribution of the stochastic process, [7( )I,
can be estimated using the multivariate normal distribution
which is analogous to fitting a probability distribution func-
tion to 12 sample points of a random variable. As a result, a
continuous probability distribution of the runoff criterion
variable, [A], can be obtained rather than developing only a
frequency distribution of m sample points of A, where m is
the number of sample realizations developed from [#( ).
The accuracy of this distribution depends on the accuracy of
the multivariate normal assumption.

CoNCLUSIONS AND FURTHER RESEARCH NEEDS

A stochastic integral equation (SIEM) formulation of the
well-known unit hydrograph method is used to develop
confidence intervals for runoff criterion variables (e.g., peak
flow rate, volume, pipe size, etc.). The multivariate normal
distribution is used with the SIEM to provide a continuous
probability distribution of the selected criterion variable.
Example applications to estimating a peak flow rate associ-
ated with a future effective rainfall event are considered
using measured rainfall-runoff data to develop the underlying
probabilistic distributions of the associated stochastic pro-
cesses. Any runoff criterion variable can be evaluated for
confidence interval estimates using the procedures dis-
cussed. Extension of the above probabilistic techniques to
other rainfall-runoff modeling approaches can be readily
achieved by analyzing the rainfall-runoff modeling error as a
stochastic process [Hromadka and Whitley, 1989].

TABLE 2. Lower Triangular Matrix L (Covariance Matrix C = LL T) for Time Intervals
27, 28, 29, 30, and 31

Column | Column 2 Column 3 Column 4 Column 5
Row 1 61.6
Row 2 65.1 2.6
Row 3 68.1 5.5 0.6
Row 4 70.5 8.4 1.4 0.3
Row 5 72.0 11.2 2.1 0.8 0.2
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Further research is needed on the important topic of
developing regionalized multivariate normal distributions of
rainfall-runoff modeling error, as well as the extent to which
this model fits observed data. Regionalization would provide
an estimate of the means and variances in the multivariate
normal distribution estimation of modeling error, which
could then be transferred to ungauged catchments where the
rainfall-runoff model is to be applied. In this fashion, confi-
dence intervals could be estimated for runoff criterion vari-
ables of interest, in order to make better design and planning
decisions which include uncertainty issues and risk. Further
study would also include the effect of estimation errors on
the final results.

In this note the distribution for the criterion variable, for
example max Q, is computed given the effective rainfall
e( ), which is the conditional expectation E(max Qle( )).
If the distribution for ¢( ) were known, say, for a class of
severe storms, then the (marginal) distribution for max Q
could be obtained which would then reflect both the varia-
tion in the unit hydrograph and the variation in effective
rainfall.
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