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Many important engineering problems fall into the category of being linear operators with supporting
conditions. In this paper an inner product and norm are used to numerically approximate the linear
operator equaltion by use of geaeralized Fourier series. The resulting approximation is the ''best”
approximation in that a least squares ervor is minimized simultanecusly for boih fitting the problem’s
boundary conditions und satisfying the linear operator relationship (the governing equations) over the
problem’s domain. Because the numerical approximation technique involves a well-defined inner
product, the approximation error can be evaluated by using Bessel's inequality. Minimization of the
approximation ervor is subsequenily achieved with respect to a weighting of the inner product com-
ponents and the addition of basis functions used in the approximation. In this paper the numerical
modelling techrigue is applied toward evaluating linear operation relationships such as ordinary and
partial differential equations with fixed boundary equations. Nonlinear operators are also considered
that can be approximated as being stepwise linear for portions of the problem domain (space or time).
Additionally, different types of basis functions are considered, namely, the usual finite element trial
Junction class, and also basis functions that span the domain with nonzero values (almost everywhere)
such as polynomials, among others. Application of the generalized Fourier series approach to solving
the problem of coupled heat and soil water flow in freezing soils demonstrates the wiility of this
numerical modelling technique.
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Introduction

The development of the considered numerical approx-
imation technique is presented in detail in Ref. 1. Al-
though a brief summary of the mathematical under-
pinnings of the technique is provided below, the reader
is referred to Ref. 1 for in-depth considerations.

An inner product for the solution of linear
operator eguations

The setting for solving a linear operator equation with
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boundary conditions by means of an inner product 1s
as follows:! Let £ be 4 domain in R™ with boundary
I' and denote the closure of ) by ¢l (). Consider the
Hilbert space L3*(cl({}), du), which has mmner product
(f.2) = | fg du. A method to define the inner product
for the development of a generalized Fourier series is
to let 4 be measure g, on {2 and another measure y,
on I, For example, one choice for a plane region would
be for u, to be the usual two-dimensional Lebesgue
measure d{) on Q and for u, to be the usual arc length
measure dT" on T'. Then an inner product is given by

(f.9) = [ fedn+ [ fgar M

Consider a boundary value problem consisting of a
linear operator I defined on domain {}L.) contained in
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Because the (g)~ are orthonormalized and the inner
product (u, v} is well-defined, the coefficients A; of (8)
are immediately determined by the generalized Fourier
constants, A, where

Af=(gre) J=12,....m (11)
Thus
qb:':; = 2 A_.:'{‘g,r' = E (gjs ¢7)gj (12)
i=1 Fel

is the “*best’” approximation of ¢, in the space &, for
the considered inner product.

Approximation error evaluation

From the generalized Fourier series approach and the
definition of the inner product, Bessel’s inequality ap-
plies. That is, for any dimension m,

" T

(@, d)= 3 (g, d) = 2 A {13)

F=1

where

@61 = [@rar+ [worao
I ¥)
= [@rdr + [ r2do (14)
T [

Equation (14} forms an upper bound 1o the sum of
(g;, $)? as the dimension m increases. Consequenily,
one may interact with the approximation effort by care-
fully adding functions to the {g)™ in order to best re-
duce the error computed by Bessel’s inequality.

The weighted inner product

In the inner product of (4), equal weight is given to the
various requirements imposed on the best approxi-
mation function ¢, from the space § spanned by the
m linearly independent basis functions {f}”. Namely,
the L? error in satisfying the linear operator relation-
ship over {) is weighted equally as the L? error in sat-
isfying the problem’s boundary conditions,

Due te the limitations of computer power, only a
finite number of basis functions can be used for ap-
proximation purposes, and so an argument is made to
weight the terms that compose the inner product dif-
ferently. For 0 < € < 1, one weighting of (4) is simply’

(u,v,€) = ejuvdf‘ + (1 - E)J-LuLvd.Q
i

T
0<e<1 (15)
In (15) an e-value close to 1 would weight the approx-

imation function ¢, of $™ toward satistying the prob-
lem’s boundary conditions rather than satistying the

finear operator, Similarly, an e-value close to O would
weight the ¢, approximation toward satisfying the lin-
ear operator relationship over (.

it is noted that (15) is still an inner product for a
given choice of € and will be used to develop the gen-
eralized Fourier series using (6). And as the dimension
§* increases, the Bessel’s inequality stil{ applies in that
X = x.and

Ae = 0 ||1I¢m - {Mlie = (“-, e, G)UZ =0

(16)

implies

The choice of basis functions

The inner product of (15) demoenstrates, as one would
expect, that the “*best” approximation ¢, in 5 to ¢
can be only as “‘good’” as the space 5™ permits. Hence
the choice of the underlying basis functions, {f™, dic-
tates the goodness of the approximation to be antici-
pated. For example, by choosing the {f;)” such that
each element f; satisfies the operator, then the domain
integrat of (15) vanishes, and a boundary integral equa-
tioni method results (for example, Hromadka and Yen?
use analytic functions and the inner product of {15) to
numerically approximate ideal fluid flow problems in
two-dimensional domains),

In this paper, two types of basis functions are con-
sidered: basis functions that are nonzerc almost every-
where on 2 (such as polynomials) and basis functions
such as the type usually employed in finite element
methods (that is, they are nonzero only in a prescribed
finite element}.

Numerical approximation of integrals and
approximatjon in R”

In numerical approxiniation of the integrals in (13} the
boundary 1" and domain £ integrals are usually esti-
mated in evaluating the integrand at each point of a
dense partitioning and weighting the integrand point
value according to the Riemann integral area (or length)
associated with the evaluation point. In this fashion,
as the density of evaluation points increases (and as
the evaluation point-associated area or length de-
creases), the numerical approximation error of the in-
tegrals decreases. Assuming that the numerical infe-
gration approximation utilizes a partition of the domain
Q (or boundary I') into equal evaluation point-associated
areas (or boundary lengths), the numerical integration
effort is equivalent to resolving the generalized Fourier
series problem as a vector space problem in R", where
n is the total number of evaluation points used over
0 U T, and the inner product of (15) is the well-known
dot product between n-dimensional vectors in R*.
The above equivalence between the numerical ap-
proximation of the inner product integrals and selving
a vector space problem in R" also indicates that in-
creasing computational effort in a region of the problem
(by using a more detajled discretization with finite ele-
ments) is equivalent to a spatial weighting of the inner
product integrals, where more weight is added ac-
cording to the density of the evaluation points.
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1. the approximation of the solution space by the space
§™ spanned by the selected m basis functions, (f)";

2. the use of the L? norm in minimizing approximation
error; and

3. the approximation of the space §7 by the space R”
(that is, the representation of the basis functions,
(£, by the vectors in R™, (F)™).

Example 1

The above numerical technique is applied to the one-
dimensional ordinary differential equation y” + y = 0
with boundary conditions w0} = 0 and ¥(#/2) = 1.
The inner product of (15) is used with e = 0.50 and
with the basis functions selected from {1, x, Vx, sin x,
cosx, xsinx, xcosx, %, x%, x>, x*, x%. That is, finite
element—type basis functions are not currently being
considered. For prescribed subsets of basis functions
the approximation results ure shown in Figure 2. The
utility of e weighting factor in the inner product is
shown in Figure 3, where several € values are used,
demonstrating the weighting of either the operator or
the boundary conditions. The corresponding success
of solving the governing operator is shown in Figure
4 for various ¢ values. It is seen in Figure 4 that as the
inner product weighting is focused toward solving the
operator L{¢) = 0, the approximation effort is indeed
weighted towards zero error in the operator space.

Example 2: finite elements

We now consider finite element—type basis functions,
which are polynomials in a finite element and zero

» [Actwal Sclution)
———-= basisz I, 5, 5i0%, oSk, xoasx, ef, 12, 13, xd
———e— wasis: 1, %, 5%, COsX, ¥oosx, oF, x2, x3

—-——— basis: 1, £, sin¥, eosx, xeosx, e¥, 17

Figure 2. Approximation results for various bases, of y" +
y =0

elsewhere. That is,
dx) = T N0 &
J=1

where N;(x) is a basis function that equals 1 at nodal
point j and zero at all other nodes; m is the total number

X
\&
ACTUAL SOLUTION

Figure 3. Approximation results in Figure 2 for various & {x sin x
deleted from basis functions)

Figure 4. Approxirmnation resuits in satisfying the operator
y" + y = 0 for varicus basis functions
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Figure 9. Solving y" = 3y + y = sin x by using quadratic trial
functions with nodes at 0, 1, 2, ..., 10. The solid curve is the
exact solution; the dashed curve is the approximation

For this type of problem the linear operator equation
is
P4 P
2.9
ax ay
with boundary conditions ¢¢ = ¢, on boundary I'.
By using the concepts suminarized previously, the

L= 0  inQ (23)

N;' (x_. ,V) = {0 (x? }:) & nf

where N{x, y) = 1 at nodal point i and N§(x,y) = 0
at all other nodal points. Additionaiiy, Mf(x, v) assumes
nonzero values only in finite elements that contain
node §.

Because the selected finite element basis functions
are quadratic polynomials in £,

204 + 2a (x,y) €Q¢
LNt(x,y) = 25
{x, y) {0 (6, 7) & QF (25)
and therefore for nodes { and j in (¢,
f LNs(x, y) LN (x, ) dQ
1)
= (2at + 2a5)(2a% + 2a%) f s 26)
.

From (25) and (26) it is seen that the use of interior
evaluation points is greatly simplified owing to the ex-
act integration of the selected basis functions.

The particular precision of the integration of basis
function contributions in (26) is due to the selection of
the basis functions. Other choices of basis functions
might not result in such precision. If the above finite
element basis functions are mixed with basis functions
such as polynomials defined over the entire domain or
functions such as logarithms or rational functions, among
others, then the use of interior evaluation points is once
again necessary in order to properly approximate the
integrals.
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Figure 10. Soiving y" + 3y’ + y = sinx by usihng quadratic
trial functions with nodes at 0, 0.1, 0.2, ...,1,2,3,...,10. The
solid curve is the exact solution; the dashed curve is the ap-
proximation

domain {} is discretized into triangular finite elements,
£}, such as those shown in Figure I. For our problem
the triangular element is based on the usual quadratic
basis function, which utilizes six nodal points. The
quadratic basis functions, N¢(x, ¥), are defined for each
node ¢ such that in finite element ¢ {which contains
neode i),

x,y)e 24)

Application: generalized Fourier series model of
two-dimensional coupled heat and soil water
transport in algid soils

In this section we develop a two-dimensional model of
coupled heat and soil water flow in algid soils. Np-
merical solution is by the use of generalized Fourier
series with basis functions of finite element type and
rational functions, Solution of the phase change pro-
cess is approximated by an 1sothermal approach, and
phenomenological equations are assumed for pro-
cesses occurring in freezing or thawing zones. The
numerical model is verified against experimental one-
dimensional freezing soil column data and experimen-
tal two-dimensional soil thawing tank data as well as
two-dimensional soil water flow data.

Numerical modelling of coupled heat and moisture
transport in freezing and thawing soils has been the
subject of a number of investigations. Modelling efforts
reported in the literature primarily deal with numerical
approximations of heat and soil water transport and
involve finite difference or finite element numerical
analogs to solve the governing equations. These nu-
merical models are reviewed by Guymon et al_ % {1980),
Hopke,” and O’Neill,* among others,

The purpose of this section is to present an appli-
cation of generalized Fourier series to model dynamic
two-dimensional coupled heat and soil water transport
in freezing and thawing soils. The model is based upon
the theoretical concepts employed in Ref. 9, but the
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Figures 17a and 17h, whereas a two-dimensional prob-
lem interpolation ts shown in Figure 17¢.)

The algorithms for the several transport processes
are shown in Figures 18-20. Figure I8 shows the heat
flow model, and Figure 19 illustrates the soil water
flow model. After time step Atf, phase change effects
are then estimated according to Figure 20. Further
details regarding the soil water freezing algorithms and
budgets can be found in Ref. 23.

Model verifications

Linearized decoupled problems may be solved an-
alytically to determine the accuracy of the soil water
and heat flow generalized Fourier series models. An-
alytical solutions of freezing soil or bulk water are for
one-dimensional columns. Thus the accuracy of a two-
dimensional model may be studied by solving one-
dimensional ¢olumn problems. Several column tests
were made for both unsaturated soil moisture transport
and heat transport, with and without phase change.
For heat transport alone, errors in the position of iso-
therms and particularly the freezing isotherm were less
than 3% for relatively fine spatial discretization and
fairly large time steps. Relative errors could be reduced
1o less than 2% for smaller fime steps. Unsaturated
soil moisture transport in a vertical column was eval-
uated by comparison to a quasi-analytical solution as
discussed in Ref. 9. Close agreement was obtained
between models.

ALGORTTHR
STEP HUMEER

ALGORTTHM FROCECURE

[1) Estimeie area-zveraged therms) = w008

parameters of heat capacity over
the contrgl volume R,, andt thermal
eonductivity en the Anntrn'l
surface B,.

(2} Estimate nodal valugs of tempera-
ture at time t+ At given the tem-

TRIANGLE ELEMENTS §URROUNCHG
peratures at time t. (See Chapter et ()
3.

—r BEECTOR
+ = CENTROID

[3] If noga) remperature values at
time t or t+AL indicate phase
change of soil-water, modify
nodal temperature values and
thermal parsméters accarding to
the isothermal phase change model.

TRIANGLE ELEWENTS SUBOTVIGEC
INTE) MOGUL DO NS

{4} Return to Step (1) to model next
timestep advancement.

Figure 18. Heat flow model

ALGORITHM
STEP HUMEER

ALGORITHM PROCEDURE

(1) Estimate arez-averaged soil-water
flow parameters of over the
contrel volume R,, hydraulic con-
ductivity on the control surface B .

{2} FEstimete nodal values of soil-water
energy heag at time £+ At given
the values at time t. (5ee

TRIAMGLE ELEMENTS SURROUNDWNG
Chapter 2.} ook (1}

-1 BISECTOR
+u CENTROID

{3} If phase change iz predicted from
the HEAT FLOW MODEL, modify nodal
values of water content, pors pres—
sure and energy head according to
isgpthermal phace change model.
Adjust soil-water flow parameters
to accommadate sofl-water-ice
mixture.

TRIANGLE ELEMENTS SUBIDHYIDHD

o AO0HL- WATER FLUK

[4] Return to Step {1} to model next
timestep advancement.

VOLUME %, AND CONTHDL

[y [
e B IATED T
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Figure 19. Soil water flow model
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Figure 20. |sotherrnal soil-water fraszing model

The two-dimensional model was compared to one-
dimensional model solutions and one-dimensional lab-
oratory soil column tests. The one-dimensional modet
has been extensively verified against soil column data
and field data.'®2L2* Figure 21 shows an exampte com-
parison for a coupled heat and scil water transport
problem involving Fairbanks silt. In this example the
column top was subjected to a —5°C temperature (at
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eralized Fourier series approach provided significant
improvement in computational accuracy over the more
traditional Galerkin finite element modelling approach
as used in the cited publications.

Two-dimensional verification of the heat transport
mode] includes comparison with field data for a lab-
oratory sand tank.?” The sand tank model consisted of
a 3.92-m-wide by 1.28-m-deep tank of sandy silt that
is over 4-m long to simulate two-dimensional thawing
around a buried small-diameter hot pipe. The em-
bankment is initially frozen. Sides and bottoms are
insulated to provide zero heat loss (i.e., zero heat flux).
The upper boundary condition and pipe temperature
boundary conditions are measured data, Because of
symmetry, only half the tank was analyzed, where at
the pipe centerline, zero heat flux in the x-direction
was assumed. A comparison of modelled and measured
soil temperatures after one day of initiating hot fluid
flow in the buried pipe is shown in Figure 24. In this
problem the generalized Fourier series approach pro-
vided quicker computational results than the Galerkin
finite element model, but with similar computational
accuracy.

Coupled problem example

A vertical homogeneous soil column is discretized
into two-dimensional finite elements as shown in Fig-
ure 25, The water table (¢ = 0) forms the lower bound-
ary condition, with an initial condition of a 45° pore
pressure head profile (see Figure 25). The top of the
column is then instantly flooded by a water depth of
2cm of water. The soil water modeling results are shown
in Figure 26. To demonstrate the effects of soil water
freezing, the same column is initialized at a tempera-
ture of 0.1°C. The top of the column is set to a tem-
perature of —5°C. The modelling results are summa-
rized in Figure 27, in which soil water pore pressures,
temperatures, and ice contents are shown graphically.

Conclusions

Generalized Fourier series provides a convenient tool
for the approximation of linear operator equattons. In
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Figure 25. Soil water flow example problem
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Figure 26. Solution of soil water flow example problem
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Figure 27. Sclution of phase change problern

this paper the use of generalized Fourier series for
numerically approximating one- and two-dimensional
linear partial differential equations is considered. Spe-
cial considerations are studied regarding R* vector space
representation of the underlying basis function vector
space and the use of a weighted inner product,

Also seen in this study is a parallel between **bound-
ary element’” and “‘finite element’’ methods. Both of
these popular numerical techniques are seen to occur
in the generalized Fourier series model development
by the proper choice of basis functions. Also seen is
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