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Research in the complex veriable boundany element method has vecently focused wwards development of
approximation error analyses and erfor bound estimates. This paper provides the first development of approximate
absolute relative error bounds for the estimaion of nodal point unknown boundary values. Because maximum
approximation error occurs on the problemn boundary due to the analeg with the maximum modulus theorem, the
developed bounds apply, as an approximation, throughout the problem domain as well. The provided formulae are

readily programmable by computer.
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Introduction

Thecomplex variable boundary clement method, or CVBEM, hasbeen
the subject of several recent papers in the development of mathematical
analyses for evaluating approximation error. Topics include Taylor
serigs expansion (Hromadka %), series expansion using trial functions
{Harevman et al.%), approximate boundary analysis (Hromadkaet al %),

amoeng others,

In the current work, approximation error is evaluated using the
computational matrix system developed by application of the CVBEM.
in this way, nodal point approximation error may be identified, and its
influence on other nodal point approximation error may be examined.

The complex variable boundary element method

The details regarding the CVBEM and its application may be found in
the refcrences, and will not be repeated here. In brief, the CVBEM
develops approximations of two-dimensional baundary value problems
involvingthe Laplace or Poisson cquations; in particuiar, approximations
of analytic functions,®(z). The resulting approximation function &(z),
is analvtic inside the simply connewted problem domain, £}, and s
continuous on the simple closed finite length problem boundary,T
Because $(z)=8(z) +Xz), both the$(z) and §){z) are potential functions
of £, and hence exactly solve the Laplace equation in Q. Thus,
approximation error oceurs on the boundary, T, and techniques used 10
better match é(z) to the boundary conditions improves the aceuracy of
() in Q due to the maximum modnlus theorem,

CVBEM matrix system development

Generally, straight-line piecewise contimuous spline functions (C)are

used as nedal point basis functions, forf € T. As a boundary vaiue
problem, each nodal point, /, has nodal valuew, =¢ + W, However, in
general, onlv & or w, is known as a boundary condition ‘at node;, not
both. So part of the'CVBEM is to estimate values for the nodal paiat
unknown component, and then use these estimated nodal values (along
with the known values) to define &(z) in €. Notation used for

idennifying the known and unknown nodal values, at nodej, is

where &, and £ indicate the known and unknown vaiues, respectively,
and A is a characteristic funclion that equals 1 or ¢ appropriately. (Note
that if both ¢, and v, are known, then non nodal equation arises for
sotving tor an unknown nodal value).

Using n(£) as netation for ihe nodal point / hasis function, forl e
T, then solving the Cauchy integral at each nodal point/ defined on [
at coordinate z,

() = L [ 0%
J =w "J)— 2',T2 r C_.‘:; N (2)

i=1,2,...m

where m nodes are defined enl™ (with a node at each vertex of Uy I'is
a polygon; ®, are the nodal values AL+ A%, ; and the limiting value of
the integral is used in eqn(2) where z,1s approached from the interior of
Q (see Hromadka & Lai*).

Solution of eqa(2) resulis in a mateix svstem, depending on whether
a fully inplicit solution for the vector nodal unknown values, is§,, is
sought:

.= A8, + AsE, {unpheit solution) (3

£, = B £, + BaE, (explicit solution) (4)

where £, and & .are colunn vectors of the nodal unknown and known
values, respectively; A, A,, B, B, are fullv-popuiated square matrices
representing the integratien of basis functions in eqn(2), (see Hromadka
& 1.ai,* for construction delails and examples).

CYBEM matrix system error analyses

Usingthe explicilmatrix system of eqn{4) providesthe convenience that
the resulting CVBEM approximation 8 0), hasthe property that known
nodal values are produced fromdd(z). To proceed with the analysis, it is
assumed that the nodal trial functions are "perfect’ in describing the
{known) boundary conditions en T ; that is. therg is no approximation
error in malching the boundary conditions by the basis funclions,
Cbviously, if ‘perfect’ trial tunctions happened to be selected for
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describing the unknown values on [, then c?)(z] =u(z). Forouranalysis,
it is assumed thas perfect irial functions are setected for both the known
and unknown boundary values on T, except for the basis function for
the nodal unknown value at node 1. That is, n,{5) is in error for the
unknown nodat value, but all other basis are perfect.

Applying the CVBEM with the assuymed basis functions resuits in
the mawix sysiem ({or the explicit solution case),

&, =B, + Byf, (%)

where the B, matrix systemn has no associated approximation error; and
B \,ontams approximaiton error due to the imperfect n,{L) basis
funcnon In comparison, had n{€) also been perfect, then no
approximartion efror in integrating m(ﬁ] on | would oceur and

& = Bigy + B, {6)

where in eqn(6).§ ,resuils in the gorrect unknown values. but in eqn(3)
£ contains approximation error due to an imperfect n ()

Letting e{C} be the error in 1 (£), such that (n,(§) - e(2)} is perfect on
I, we note that €(Z) is zero everywhere except on the two boundary
elements coniaining node 1. Integrating £(0) in the Cauchy integral of
eqn{2} develops the marrix contribution E where from eqns(3) and (8),

B:+E =B, U

Also from eqnsi3), (6) and {7,

Bad, = (By + B}y = Bok, @)

or
B?{£u - éu} - Eéu (9)

in eqn(9). it is seen that the magnitude of error in estimating the

unknown nodal values reiates to the error in the basis function and also
the magnitude of the estimate for the unknown value.

By assumption, only then, (£) basis function is in error. and the errar
1s the function £(2) which is nonzero only in the vicinity of node 1, (i.e,
the two boundary clements containing node 1). Thus, for T' and T,
being notation for the two boundary elements that contain node 1, (i.e.
L,~T, =z from eqni2).

SQC 1 / ($)d
2:\1 [\g—"" 1 FUF;,C_

Fas

{10)

iL}

where the only node where &() is nonzero isatnode 1. Thenthe martrix
E mayv be written as asquare matrix, withnonzero values enly incolumn
1. The entries in column 1 may be seen, from eqn(2), to approximately
e proporiional 1o the lengths of T, and T, and, for (row j) inversely
proportional to the distance between node | and node /.

Similar to eqni 9}, we have from eqni8},

B.(£, — &,) = E¢, (11)

which simply swaps fB £ 1 for {B, g b in eqn(9}.

Sensitivity in estimating ‘relative error 5 obtained by assuraing a rrial
function for €(Z) in developing the matrix E, for ekamplc a normal
distribution curve ora conslant ef linear function overl” and [, umong
others. Alter development of a trial E matrix {again, only column 1 has
nonzzero entries), the norm of E is defined, form nodes onT, and using
the usual matrix row and column notation,

]E||~1]E(JI|;_-1.2 (12)
Simitarly, normslB,'ﬂ and]E -6 are dcﬁnedas

B2 ll="3 > I Baling) [pi=1,2..m

i=1

(13)

max

i &, l)-—al&(z}lz_m (14}

“ u u ”" 3 [eu l!gg“'m (15)

— &) [ii=
Frarm the above

max

(Row i)| Ba(&, — €I < [ B2 il | €, - £, || (16)

As an estimate, from eqn{11) through (16),
I B2l €~ &I~ BN & an

where in eqn(i7), it is assumed that £, values are reasonable
approximations of the true (but unknown),, values, and |[fE) follows
irom eqn(12) and the assumed trial function for () on I,

Then from egqn(17), the refative error is approximated, for the nodal
unknown values,

l|€u &Ui
1€, |

- 8
B, (18)

The exiension to {ully-populated E matrices follows directly from
the above development.

Coanclusions

An approximare relative error estimation formulation is developed for
use with the complex variable boundary ¢lement method, The formulation
provides an estimatg for absolute relative error given an assumed errer
in the approximations basis functions. The technique is readily
programmable, and provides usefil error evaluation information to
supplement other techniques.
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