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Many important engineering problems fall into the
category of being linear operators, with supporting
conditions. In this paper, an inner-product and norm is
used which enables the numerical modeler to approximate
such by developing a generalized Fourier series, The
resulting approximation is the **best™ approximation in
that a least-squares (L?) error is minimized simultaneously
for fitting both the problem’s boundary conditions and
satisfying the linear operator reiationship (the governing
equations) over the problem’s domain (both space and
time). Because the numerical technique invelves a
well-defined inmer-product, error evaluation is readily
available using Bessel’s inequality, Minimization of the
approximation error is subsequently achieved with respect
to a weighting of the inner product components, and the
addition of basis functions used in the approximation. A
computer program source code is provided (see Appendix
A) to implement the procedures.

AN INNER PRODUCT FOR THE SOLUTION OF
LINEAR OPERATOR EQUATIONS

The general setting for solving a lincar operator equation
with boundary values by means of an inner product is
as follows: lel €} be a region in R™ with boundary " and
denote the closure of Q by clQ). Consider the Hilbert
space I2(cl(§2), du). which has inner products (f, g} = fy
dy. One way to define the necessary inner product for
the development of a generalized Fourier series is to let
¢ be one measure g, on £ and another measure p, on
T". Once choice for a plane region would be for g, to be
the usual two-dimensional Lebesgue measure dQ on £2
and for . to be the usual arc length measure dI on T
Then, an inner product is given by!%:

(f, 6) = gm aQ + j}g ar M
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Consider a boundary value problem consisting of an
operator L defined on domain D{L) contained in I}()
and mapping into X)), and a boundary condition
operator B defined on a domain D(B) in [XQ) and
mapping it into [*(T). The domains of Land B have to
be chosen so at least for fin D(L), Lf is in 1), and for
f in D{B), Bf is in [XT). For example we could have
Lf=V?, and Bf(s) equal the almost everywhere (a.c}
radial limit of f at the point s on [, with appropriate
domains.

The next step is to construct an operator T mapping
its domain D(T)= D(L) ~ D(B) into [XckQ)) by*:

TF(x) = Lfix) for x in Q
Tfis)=Bf(s}forson T

From equation (2} there exists a single operator T on the
Hilbert space IZ%(chi)) which incorporates both the
operator L and the boundary conditions B, and which
is linear if both L and B are linear.

Consider the inhomogeneous equation LF =g, with
the inhomogeneous boundary cenditions Bf =g,. Then
define a function g on cliQ2) by:

(2)

g=g, on {2
g =g, onQ

Then i the selution exists for the operator equation:
Tf=g

the solution f satisfies V’f=g, on Q, and f=g, on '
in the usual sense of meaning that the radial himit of f
is g, on T. One way to attempt to solve the equation
Tf= g is 1o look at a subspace D, of dimension &, which
is contained in D(T), and to try to minimize | Th—g |
over all the h in D, such as developed in detail in
Hromadka et al.®*

DEFINITION OF INNER-PRODUCT AND NORM
Given a linear operator relationship:
Lig)=honQ ¢=¢,onT (3)

Adv. Eng. Software, 1991, Vol I3, No. 4 169



A computer program for approximating a linear operator equation: M. G. Seibel et al,

defined on the probiem domain Q with auxiliary
conditions of ¢ = ¢, on the boundary I". Here Q may
represent both time and space, and ¢, may be both initial
and boundary conditions.

Choose a set of m linearly independent functions
{f;>™ and let 8™ be the m-dimensional space spanned
by the elements of {f;>™ Here, the elements of {f;>™ will
be assumed to be functions of the dependent variables
appearing in equation ¢3).

An inner-product is defined for elements of 3™ by {u,
v) where for 4, vesS™

(u, v)= f ur dI” + J. Luly dQ (4

It is seen that (i, v) is indeed an inner-product®. A normal
“| I’ immediately follows from (4) by

la| = 0} {3)

The generalized Fourier sertes approach can now be used
1o obtain the ‘best’ approximation ¢,, € 8™ of the function
¢ using the newly defined inrer-product and corresponding
porm presented in equations (4} and (5).

The next step in developing the generalized Fourier
series is to construct a new set of functions {g;>™ which
are the orthonormal representation of the {f; >™

ORTHONORMALIZATION PROCESS

The functions {g,>" can be obtained by the well-known
Gramm-Schmidt proccdure using the newly defined
norm of equation (4). That is:

g1 =H/ 111}

Gm = Uﬂi - [fma gl)gl Tl {fm's Gm - ljgm— 1].-"';
”fm - [.fm’ gl)gl - _{.fma gm—l)gmﬂl “

Hence, the elements of (g;>™ satisfy the convenient
properties that

fo,ifj#k
@, gk}~{l,ﬁj=k )

The elements (g;>™ also form a basis for $™ but,
because of eguation {7), can be directly used in the
development of a generalized Fourier series where the
computed coefficients do not change as the dimension m
of _(g,-)"‘ increases. Each element ¢,<8™ can naw be
writien as

g: 7595 ‘pm es§” {8}

where ; are unique real constants.

GENERALIZED FOURIER SERIES

The ultimalte objective is to find the element ¢,, € S such
that [l ¢,— ¢ | is a minimam. That is, we want
| ¢~ @ * to be a minimum, where

il¢m--¢||2=J. (i ?,-9;--%) dr
I Ni=1

m 2
+J (L Y }Jjgj—L) dQ {9
a\ =1
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Remembering that L is a linear operator, and L =f by
the problem definition of equation (3),

|- sz.( (Zl Vi — 4‘3;,) dI’

(S ar]

Thus, minimizing i §,, — ¢ ||* is equivalent to minimizing
the error or approximating the boundary conditions and
the error of approximating the governing operator
refationship in a least-square (or I?) sense. Because the
{g;»>™ are orthonormalized and the inner- product ) is
well-defined, the coefficients y; of equation (8) are
1mmcd1ately determined by the generalized Fourier
constants, y¥, where:

=gy $hi=12. .m )
Thus
¢;=JZ‘1 179;= 19, g {12y

is the ‘best” approximation of ¢, in the space §™

APPROXIMATE ERROR EVALUATION

Due to the generalized Fourier series approach and the
definition of the inner-product. Bessel’s inequality
applies. That is, for any dimensions m:

6, ¢}z 2 (g, OV 'i g2 (13

where

(¢, ¢)=J (@)*dI + [ (L) dﬂ:J ¢* dI’
r w2 I

+J~ f2 4% (14)
o

Equation (14) 1s readily evaluated and forms an upper
bound to the sum of (g, ¢)° as the dimension m increases.
Consequently, one may interact with the approximation
effort by earefully adding functions to the {g;>™ in order
to best reduce the diflerence computed by Bessels
inequality.

THE WEIGHTED INNER PRODUCT

In the inner product of (4), equal weight is given to the
various requirements imposed on the best approximation
function @,, from the space S™ spanned by the m tinearly
independent basis functions {f;>™ Namely, the {? error
in satisfying the linear operator relationship over Q is
considered by equail importance as the I7 error in
satisfving the problem’s boundary (and initial) conditions.

Due to the limitations of computer power, oaly a finite
number of basis functions can be used for approximation
purposes, and so an argument is made to weight the terms
which compose the inner product differently. For
0 <& < 1, one weighting of equation (4} is simply:

(u. v =8J uv dr+(]—«sjf Lulv dQ {L5)
I 0

In equation {15), 4n e—vaiue close to 1 would force the
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approximation function ¢, of ™ to focus upon satisfying
the problem’s boundary conditions rather than satisfying
the linear operator. Similarty. an e-value close to 0 would
focus the ¢, approximation towards satisfying the linear
operater relationship.

It is noted that equation {15} is still an inner product
for a given choice of ¢, and will be used to develop the
generalized Fourier series using the previous presented
procedures. And as the dimension 5™ increases, the
Bessel’s inequality still applies in that y = y,, and

L=0=¢, -l =0 {(16)

USER INSTRUCTIONS FOR THE GENERALIZED
FOURIER SERIES ANALYSIS PROGRAM

In this PASCAL implementation of the program the
source code requires alteration and re-compilation for
each different problem, and for each trial solution to a
problem. The program structure remains the same, but
the number of trial functions and the equations for
computing the functions will change from problem to
problem. The following is the procedure for tailoring
the program te solve a specific problem, using the
problem

¥ y=0, 10) =0, pn/2)=1

as zn example.

The problem

Generally, the problem statement will be given in the
form of a linear coperator which describes the points
within a boundary, and in the form of point values an
the boundary, From the given set of conditions a vector,
8, is constructed. The elements of this vector represent
the given points which will be used in the approximation.
The user will then construct a set of basis vectors which
will be used i the least squares approximation of 8.
Suppose, we wish 1o solve our exampie problem using
10 points on the interval (0. #/2). Then

8=0,10,0...,0

where the first two slements, O and 1, are the values at
the end points. 0 and #/2, and the remaining zeros
represent the operator 3" + v applied {o 19 points in the
interior. Using the GFSA program, 6 will be approximated
in the least-spuares sense by a set of basis vectors
constructed from functions chosen by the user.

The solution
With the problem represented by the vector ¢, the user
decides on the following parameters for his trial solution:

1. The number of interior points,
2. A weighting factor for the boundary points.
3. A set of basis functions.

The interior points are chosen depending on where the
most accuracy is desired. The more points which are
chosen in a certain area, the more accurate will the
approximation be in that arca. The weighting factor for
the boundary points is ziso determined by accuracy
considerations. The weighting factor, & is a number
between 0 and 1 which scales the boundary point values.
The factor 1 — ¢ then scales the interior points. If the user
wanls the approximation to be rnore accurate at the

boundary points then he sets & to a aumber close to 1,
and if the interior points are more critical then he choaoses
g to be a number near 0.

The user will choose basis functions depending on his
insight into the problem; functions will be chosen which
are believed to have the best chance of contributing to
an accurate solution, Functions can be added and deleted
to test their effect en the solution.

For our exampie problem y” + y = 0, suppose that the
trial functions 1, x, \/x, sin x, cos x, xsin x, and xcos
x have been chosen. Then the basis vectors are
constructed as follows:

1[4, 1]
x:[Os n."'llzy Xy Xy viiy x}

G0, /ri2 24 %, L, 2+ fx)
sin x:[0, 1,0, 0, ..., 0]
cos x:[1,0,0,0,.,.,0]
xsin x: [0, 7/2, 2 cos X, ..., 2 cos x|
xcos x:f0,0, —~2sin x,..., —2 sin x

The first element in each vector is the function
evaluated at the first boundary point {x = 0), the second
elemnent in each vector is the function evaluated at the
second boundary point {x==x/2), and the remaining
elements are the results of the operator y” + y applied to
the functions,

Adapting the program

Refer to the listing of the PASCAL program which
solves the example problem 3" + v =0, YO} =0, Wr/2) =1,
as an tllustration of the following steps.

1. Input of Data
There are two methods of inputing data: one may
create a data file which the program calls, or one may
hardcode the data into the main program. The latter is
advantageous in the case where the interier peints are (o

be equally spaced.
In the case of hardcoding, feilow the proceduore below:
A) In the main program, assign values to the variables
for the number of boundary points (nbon), the
number of interier points (nint), and the weighting

factor {epslo). Example:

nbon : =2;
nint = 10;
epsle : =0.5;

B} In the main program, define the data points.
Example of equally spaced interior points:

x[1] =0

x[2] : =n/2;

value[1]: =0;

value[2}: =1

ntol : =nbeon + nint;

for i : =(@mbon + 1) to ntol do
begin
x[i1: = x[nbonl*(i-nben)finin + 1);
value[i]: =0;
ylil: =0;
end;

Note that the array y[ ] must be set 1o zeros since
this is a two-dimensional problem.
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In the case of creating a data file, the data file should
comprise of the following lines:

fine # line contents
3] nbon nint epsio
2) x[i] ¥[i] value[i]

nbon+ 1} x[nbon+ 1], y[nbon+ 1].value[nbon + 1]
nbon +2j x[nbon + 2},y{nbon + 2],value[nbon + 2]

nbo.n +ntol) x{nbon + ntol], y[nbon + ntol],
vatue[nbon + ntol]

2. In the procedure ‘basis” declare the variable to be
used for the basis functions and the number of functions:
var
XX, X2 : real,
being
X2 @ = sqQUXXXx});
nb : =7; {7 functions)

3. In the procedure “basis’ define the solution, vixx}, at
each point xx as the linear sum of the basis functions
with coeflicients xk[nb, j]:

v =xk[nb, 1]*1 + xk[nb, 2]*xx + xk[nb, 3]*x2

+ xk[nb, 4]*sin(xx)
+ xk[nb, 5T*cos{xx}
+ xk{nb, 6]*xx*sin(xx)

+ xk[nb, 77* xx*cos(xx);

4. Inthe procedure ‘basis’, define f as the linear operator
applied to v; for the example problem this is v* + v:

J:i=xk[nb, 17+ 2*xk[nb, 3]+ xk[nb, 2]*xx
+ xk[nb, 3]*x2
+ (xk[nb, 6]*xx — 2*xk[nb, 5])*sin(xx)
+ (xk[nb, 7]*xx + 2*xk[nb, 4])*cos{xx);

3. Define the elements of the basis vectors in the
procedure *basis”. Exampie;

if i > >nnod then

begin
gll, i]: =1;
gl2, 1] =xx;
E[3,i]: =2+ x2;
g4, i]: =0;
gls, i]: =0;

gl6, i]: = 2*cas{xx);
g(7, 1] = —2*sin{xx);

end
else
begin
glii]: =1;
g2, 1] =xx;
g3, i}: =x2;
2[4, i]: =sin[xx);
gl5, i) =cos{xu;
gf6, 1]: = xx*sin(xx);
g[7, i]: = xx*cos(xx);
end;
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6. If the exact solution to the problem is known, then
the equation for the exact solution is defined of the main
program in order to compute the approximation errors.
Example:

ex: = sin(x[i]);

If there is no known exact solution then the error
computations at the end of the program are meaningless
and they can be deleted.

7 Compile the modified program.

When the program is run the outputs go to the printer
with device name ‘LPTI’. The information printed
consists of the data points, the resulls of the orthogonality
test, the coeflicients for the least squares solution, and
the data point values computed from the approximation
function. '

SUMMARY OF RESULTS
Given the boundary problem:
YO +y=0, 0 =1, y(0)=0,

G)-00()-:

an analytic solution is easily derived:
¥ix) = 2.14 sinx + cosx — 214 x cosx — 1.363 xsinx

With a compiete basis, the computer program provides
the exact solutien. The following figures demonstrate the
effect of an incomplete basis. In both cases, xsinx has
been deleted from the set of basis functions. Figs 1
and 2 demonstrate the effect of a higher order monomials
being added to the set of basis functions. With the
addition of each higher order monomial, the approximation
becomes more accurate. Figs 3 and 4 demonstrate the

1
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Fig. 1. ¢ for various basis
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—————— -~ AAE L Botutiend

——— = Twn LA, wme, cosk acesy, €%, 5t 13, v 13

Fig. 2. & for various basis

e~ ACTUAL SOLUTION

Fig. 3. Selution space for various s (xsinx deleted from
basis functions)

effect of a change in & iLe., focusing upon satisfying the
problem’s boundary cenditions or upon satisfying the
operator. As expected, a small ¢ satisfies the operator
space well but gives & poor approximate solution, while

Y
1.0
Bt
-}
£=.95
7 =9
6F £w.8
f;.?
Sk

Fig. 4. Operaior space for various & ( xsinx deleted from
basis functions,

a larger ¢ gives a good approximation while performing
poorly in the operator space.
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APPENDIX A SOQURCE PROGRAM - GENERALIZED FOURIER SERIES APPROXIMATION

PROGRAN EXANFPLE (GFSA TAS,

Printsr LPT1};

ok y + v =0 y<O>= 0 yi(pi72) = 1 X
type
index = integer;
number = real;
240 = arrayll..50} of REAL;
24040 = arrayll..50,1..50) of REAL;
a4l = arrayl ¢. .50} of REAL;
var
lst, data: text;
X, ¥, b, s, value: a4q,
»xk, g: a4040;
node: a4l;
nbon, nbas, nint, ntol, kk, ntotl, i, 3, %: index;
epslo, sarea, ex, diff, sum, fbar, fd, xd, vbar, bkl, suml: real;
{$1 b:GFSA.PAS)
procedure basis{var nb: index; nnod, i, kk: index;var =®x, yy, V,
f: number; var Xk, g: a1040; var node: a4l);
var
x2, %3, y2, y3: real,
begin
X2 1= sgr (X,
nb := 6;
if kk=1 then
begin
v = xXkinb,11%1 + xk[nb, 2]%xx + xklnb, 31*x2
+ xkinb,4)l¥sindxx) + xkinb,5]*cosdixx) +
xk( nb, 6] ¥xx¥sin (xx)
+ xEKInb,7]1¥xxXcos (xx);
f := xkinb,1] + Z2xxkinb,3! +xklnb,22xxx + xklab,3]1xx2
+ {(xkinb,6!*Xxx -2%xkinb,5])*sin(xx’
+ (xkinb,7l%xx + 2¥xkinb, 4l kcosi{xx’;
and
else
begin
if i > nrod then
begin
gl1,i1 := 1;
gl2,1] = xx;
g{3,11 1= 2 + =2,
gl4,1] = 0
gl5,1) = O
glé, 1] = 2 X Cos(xx};
gL7,11 := -2%ksin(xx):
end
else
begin
gl 1,11 = 1,
glz2,1] = =xx;
gl3,1i1 = x2;
gl4,.1) := sindlxx’;
(5,11 = CosS(rx);
gl 6,11 = AHEKSINIEKD;
gl 7,11 = xxXCOSI(XX);
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and;
and;
end; (X procedure basis %

(x Main ¥
begin

assignd(lst, ' lptl’ »;
rewrite{lst;;

writeln{(ist,' Generalized Fourier Analysis Program' y;
nbon := 2 ¢* The number of boundary points *x)
nint :1= 20; ¢ The number of interior roints x>
epslo = 0.50; (¥ Weighting for the boundary points x>

(¥ Compute the points and the functionalx)

xf 11 = Qj
x[21 = pir2;
vyl 1l := 0O;
yl21 := 0
valuel 1] = 0;
valuel 2]l := 1i;
ntol ;= nbon + nint;
for i = (nbon+l’> to ntol do
begin
xLi] = xfi-1] + 0.20;
ylil = 0
valuel il = §;
and;

(X Compute the area x>

sarea 1= 0,
for i := 1 to nbon do
begin
sarea ;= sarea + sqrivaluel{il) X epslo;
end;
for i := (nbon+l) to ntol de
begin
sarea := sarea + sqri(valuelil) x (i-epslo’;
aend;

(¥ Print the data points X
listdata;
(¥ Determine the Vector Coefficients
for 1 = 1 to ntol do
begin

basis{(nbas, nbon, i, 0, xlil, yiil, vbar, fbar, =xk, g7

and;
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(¥ Modified Gram-Schmidt Procedure %
gram;
‘¥ Approximate Boundary Foint Values )

writeln(lst, '¥X Approximate Boundary Point Errorsx’ ),
writeln(lst,’'Point':4, 'Exact':20, ' Approximation’:20,
'Rel Error':20);
for i := 1 to nbon do
begin
basis{nbas, nbon, i, 1, =x[1i1, vl(1), wvbar, fbar, xk,g>;

1f valuel il = ¢ then
®d = —-9999
else
Xd := (valuelil-vbar)/valuel il;
writeln<(lst, i:4, valuelil:2Q¢, vbar:20, xd: 20);
end;

(x Approximate Interior Point Values %>

writeln(lsty;
writeln(lst, 'Approx.Interior Nodal ValuesaErrors');
writelnd{lst, ‘Nade':4,'Exact’:20,'Appraximatian’:EO,‘Rel Error': 20
for 1 := {(nbon+l? to ntol do
begin
basis{(nbas, nbon, i, 1, x[i]l, yl[il, vbar, thar, xk, g);
ex = sindx(1i])>;
if ex <> 0 then
¥d := {ex—vbar)/ex
else
xd := —-9909;
writeln{lst, i:4, ex:20, vbar:20, xd:20?2;
end;
close(lst);
end.
{¥ SEFBA,PAS Gensralized Fourisr Series Analvsis Prosram #3
procedure listdata; ) -
begin
assign(lst, '1lptl’' »;
rewrite(listr;

writeln(lst, 'Generalized Fourier Series Analysis Program’ j;
writeln(lst,'The number of boundary potnts = ', nbon);

writeln{lst, 'The number of interior points = ', ninty;
writelnd(ist, 'The welighting factor for the boundary pointsz’,epsloﬁ

(x Print the Boundary Points %>
writeln(lst?);
Wwritelnd{lst, " FKXKXHIKKKKKKKEX Boundary Nodes XXREEXEXXEKEEXKXRXEKRX')

.
writeln(list, ’'Node':4, 'X':20, 'Y':20, 'Value':20’;

for 1 := 1 to nbon do i,
begin ;
writeln(lst, 1i:4, x[11:20, yl11:20, valuelil:20); end;
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(¥ Print the interior points %)

writeln{lst>;
writelnd{lst, ' XKXKAKKKKKKIKKXK Interior Polnts XXXKXKKKREKXEKKK® D
ywriteln(lst);
ntol := nbon + nint;
for i := (nbon + 1) to ntol do
begin
writeln(lst, 1:4, x{11:20, y[11:20, valuelil:20); end;

end; (X procedure listdata *>

procedure gram;
(¥ Modified Gram~Schmidt Orthogonalization Process X
begin
for i := 1 to nbas do
hegin
sum := 0;
for J :=
begin
if 3 <= nbon then
sum := sum + epsio k% sqr(gli,jl>
else
sum :

1 to ntel do

sum + {1 - epslo’ X sgrigli, jl’;
end;

sum = sqrt(sum’;
=l1il = sum,

if sum < §.000001 then
stil = O

li

for j
baegin

if sum » O then
gli, 3} = gli,jls/sum

1 to ntol do

else
gti,j1 := 0;
aend;

if i <> nbas then
begin
for kk = (i + 1) to nbas do
begin
suaml = ¢,
for j := 1 to ntol do
begin
if j > nbon then
suml = suml + {(l-epslo’ X glkk, i) =xgli,j?

else
suml := suml + gli,jl] *x glkk,J] xepslo;

end;

if sli]l > ©0 then .
xklkk, 11l := -1 ¥ sumi / slil
else
»k{ kk, 1] 1= O;
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for j = 1 to ntol do
begin

gikk,J) := glkk,J] - <(sum} * gl{i,jly;
end;

end;

end;
and;

writelnd(lst, ' KEXEXKERKKIXRKEK Orthogonality Test XXEXKKXKRXEKK® ),

for i1 := 1 to {(nbas-17 do
begin
tor k := {(i+1l> to nbas do
begin
sum = 0;
for j := 1 to ntol do
begin
1if 1 <= nbon then
sum := sum + gL1,j] % glk,ji X epslo
alse
sum := sum + Z(1,j] x glk,j)l % (l-epslo’;
end;
% writelni(lst, i:4, k:4, sum:Z202»; X7
end;
and;
tx Compute the Coefficients of Bl il = Valueblil, GL11> *?

writeln(lst, ' ¥%x%x% Bvaluation Coefficients GL1Il1.BL 1) ~GLi].GL1]

sum = 0;
for i := 1 to nbas do
begin
bkl := 0;
for j := 1 to ntol do
begin
if j <= nbon then
bki := bkl + valueljl x gii,jl % epslo
else
bkl := bkl + valueljl % gii,jl % (l-epslo’;
and;

(* Compute the Norm of the Generalized Fourier Coefficients X7

if sL411 > 0.0000001 then
bLil := bkl sli]
else
blil = 04
sum = sum + sqr (bkll;
end;
for i := 1 to nbas do
writelndlst,'bIl’,1:4,'1 >, bLil:20);
writeln{lst);
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(¥ Compute Basis Function Coefficilents by Back Substitution %O

for i := nbas downto 1 do
begin
if i = nbas then
xkf nbas, 11 := bi nbasl
else
xk(nbas, 1] := xkinbas,1l * binbasl +blil,
end;
for i := (nbas—-1> downto 1 deo
begin
for j := i dewnto 1 do
begin
if i<>J then
xklnbas, 31 = xklnbas,1l *x xkii,jil+xkinvas, jl;
end;
and;
writeln{lst, XAkK Back Substitution Coefficients XkXx' )

writelnd{lst);

faor i := 1 to nbas do
writelnd{lst, xkinbas,1l:20);

writelndlst’;
end;
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