Interactive hydraulic analysis for storm drain pipe systems

C.-C. Yen

Williamson and Schmid, Irvine, California 92714, USA

T. V. Hromadka II

Williamson and Schmid, Irvine, California 92714 and Department of Mathematics, California State University, Fullerton, CA 92634, USA

An interactive hydraulic analysis computer program has been developed to aid hydraulic engineers in designing storm drain pipe systems. The entire storm drain system is analysed for both supercritical and subcritical flow effects. By comparing the specific force (pressure plus momentum) for each pipe reach, the hydraulic grade line (HGL) and energy grade line (EGL) for the entire system can be calculated. Using this approach, both pressure and nonpressure storm drain system hydraulics can be evaluated simultaneously. Thus, a more economic storm drain pipe system can be designed by the hydraulic engineer, with the speed and computational accuracy afforded by the computer.

Key Words: gradually varied flow profile, supercritical flow, subcritical flow, pressure plus momentum, storm drain pipe system, hydraulic jump, pressure flow, open channel flow

INTRODUCTION

A strategy for the design of the storm drain and the selection of pipe sizes is to attempt to achieve pressure flow conditions whenever possible. This strategy is especially useful in regions where the land topography has a mild gradient (approximately 0.0010 to 0.0040 ft/ft). The resulting system would be somewhat optimized in that the design consideration of the hydraulic grade line would closely conform to the maximum allowable value while providing a reasonable design for flood protection purposes.

The typical design of any storm drain system requires two basic procedures. Assuming the system has been laid out in plan, with all inlets located and the rate of inflow to each determined, the first steps are to sum the rate of flow in each pipe, select all pipe sizes and calculate the friction loss in each length of pipe. The second step is to calculate the change in hydraulic gradient (ΔY) at each junction. The hydraulic grade line elevation is determined at the branch point of each junction or inlet and the change (ΔY) at the junction is added algebraically, working progressively upstream or downstream along each pipeline. The more practical method proceeds downstream keeping the hydraulic grade line just below the street surface but low enough to accept surface flows. The last pipeline must then be sized so the hydraulic grade line is at or above the control hydraulic gradient elevation. In general, most of the storm drain analysis proceeds upstream when the depth of flow is greater than critical depth, and proceeds downstream when the depth of flow is less than critical depth. In a pressure flow system, the analysis always proceeds upstream. Also note

that the storm drain analysis proceeds upstream from the downstream control depth is the more correct method but is more time consuming.

In the subject computer program, the hydraulic analysis first proceeds upstream. Therefore, the water depth is assumed to be greater than the critical depth in each drainage reach. A second analysis is then made by calculations in the downstream direction, where the depths are less than or equal to the critical depth in each drainage reach. Finally, the pressure plus momentum values for each of the two analyses are compared to determine the EGL and HGL for the entire storm drain system. Pressure flow, nonpressure flow, hydraulic jumps, and minor losses in each drainage reach can be determined individually.

FUNDAMENTALS OF HYDRAULICS

Hydraulic grade line and energy grade line

For any point in the fluid, the summation of the elevation plus the pressure head is known as the piezometric head. The piezometric head represents the level to which liquid will rise in a piezometer. The line drawn through the top of a series of piezometer columns is known as the hydraulic grade line (HGL). The energy grade line (EGL) is determined by the sum of the HGL and the velocity head $(V^2/2g)$ such as is shown in Fig. 1a.

Specific energy

In open channel flow, the specific energy S_L , is given by

$$S_E = y \cos^2 \theta + \alpha V^2 / 2g \tag{1}$$

(a) Pressure flow system

(b) Uniform flow in open channel

Fig. 1. HGL and EGL for pressure and nonpressure flow system

where

y = vertical depth of flow

 θ = angle of the longitudinal bed profile with respect to the horizontal. (In most cases θ is small, therefore $\cos^2 \theta = 1$)

α = kinetic energy correction factor. This is equal to one when the velocity distribution is uniform

V = average flow velocity

g = gravitational acceleration

Given the flow rate (Q), and cross section flow area (A), and for $\cos^2 \theta = 1$,

$$S_E = y + Q^2 / 2gA^2 \tag{2}$$

$$(S_F - v)A^2 = Q^2/2g = \text{constant}$$
 (3)

From equation (3), it is clear that the specific energy curve of Fig. 2 has the two asymptotes of $y = S_E$, and y = 0.

The specific force

Consider a steady, uniform, incompressible flow in an open channel between channel section A to section B, and apply Newton's second law of motion. The second law of motion states that the change of momentum per unit time in the body is equal to the resultant of all the external forces that are acting on the body (see Fig. 1b). Thus for a fixed control volume.

$$Q(\beta_B V_B - \beta_A V_A) = P_A - P_B + W \sin \theta - F_C \qquad (4)$$

where

 β = momentum correction factor

 P_A and P_B = resultant pressures acting on section A and B, respectively

W = equivalent weight of the fluid pressure enclosed between sections A and B

 F_f = total external forces (including friction) along the wetted boundary of the channel between section A and section B

= angle of channel slope with respect to the horizontal

The pressure forces are calculated by

$$P_A = \gamma A_A h_A, \qquad P_B = \gamma A_B h_B \tag{5}$$

where

 γ = the specific weight of the water

 h = the distance to the centroid of the cross section below the water surface

If the difference of $W \sin \theta - F_f$ can be neglected and $\beta_1 = \beta_2 = 1$, then equation (4) can be simplified as

$$A_A h_A + Q^2 / g A_A = A_B h_B + Q^2 / g A_B$$
 (6)

Both sums of the terms in (6) involve identical components, and can be grouped together as the specific force, F_S . That is,

$$F_S = Ah + Q^2/gA \tag{7}$$

The specific force curve (Fig. 3) is similar in some of its characteristics to the specific energy curve (Fig. 2).

LOSSES

Head losses on the storm drain system are based on Los Angeles County Road Department, Design Manual (1972), Los Angeles County Flood Control District, Design Manual: Hydraulic (1970), and Orange County Flood Control District, Design Manual: Channel Hydraulics and Structures (1972).

Friction losses

Friction losses for pipeflow conditions are computed from Manning's equation for steady flow

$$Q = \frac{1.486}{n} A R^{2/3} S_f^{1/2} \tag{8}$$

Fig. 2. The specific energy curve

Fig. 3. The specific force curve

Table 1. Typical, Manning's friction factors

Conduit description	n
Reinforced concrete pipe (RCP)	0.013
Ashesto cement pipe (ACP)	0.012
Corrugated metal pipe (CMP)	0.024
Asphalt lined CMP	0.015

where

Q = flow rate

n = friction factor

A =flow area of pipe

R = hydraulic radius

 $S_f = friction slope$

For storm drain design purposes, the friction factor is assumed to be a constant (regardless of the flow rate). Typical values for the friction factor are given in Table 1. The friction losses, H_f , can be estimated as

$$H_f = S_f L \tag{9}$$

where L is the length of pipe.

Manhole losses

Manhole structures are generally constructed along the storm drain line in order to provide an adequate maintenance access to the pipeline. The losses, H_m , due to the passage of flow through the manhole can be estimated as

$$H_m = K_m \cdot H_v \tag{10}$$

where

 K_m = manhole loss coefficient

 H_v^m = flow velocity head

In this calculation, the pipe diameter is assumed to not change at the manhole.

Bend and angle-point losses

Bend and angle-point losses are usually limited to pressure flow situations since the losses evident in properly designed open channels are typically minor. Bend and angle point losses are additive to frictional losses and are usually equated with velocity head by $H_1 = K \cdot H_n$.

The bend losses, H_b , can be estimated as

$$H_b = 0.25 \cdot K_b \cdot H_v \tag{11}$$

where $K_b = \sqrt{\Delta/90^{\circ}}$ and Δ is the central bend angle in degrees (see Fig. 4).

The angle-point losses, Hap, can be estimated as

$$\mathbf{Hap} = \mathbf{Kap} \cdot H_{\nu} \tag{12}$$

where Kap is a coefficient which is experimentally determined. The coefficient Kap is assumed to be a function of the central angle (see Fig. 5) as shown in Table 2.

Sudden pipe-reduction (contraction) losses

The sudden contraction of a pipe flow is shown in Fig. 6. A convenient procedure for estimating the sudden contraction losses, H_c , is to assume the energy head loss to be a function of the downstream velocity head, H_{v2} , by

$$H_c = K_c \cdot H_{v2} \tag{13}$$

where K_c is a coefficient related to the ratio of downstream and upstream pipe flow area A2/A1 given by Table 3.

Fig. 4. Bend loss model geometry

Fig. 5. Angle point loss model geometry

Fig. 6. Sudden contraction model geometry

Table 2. Typical values of Kap

Angle (degrees)	Kap	Angle (degrees)	Kap
I	0.005	10	0.030
2	0.008	12	0.037
3	0.011	15	0.047
4	0.014	20	0.067
5	0.017	25	0.090
6	0.020	30	0.115
7	0.022	35	0.146
8	0.024	40	0.148
9	0.027	45	0.148

Table 3. Typical values of K.

$A^2/A1$	K_c
0.10	0.46
0.20	0.41
0.30	0.36
0.40	0.30
0.50	0.24
0.60	0.18
0.70	0.12
0.80	0.06
0.90	0.02
1.00	0.00

Fig. 7. Sudden enlargement model geometry

Sudden pipe-enlargement losses

The energy head loss due to a sudden enlargement of pipe size (see Fig. 7), H_e , is given by

$$H_e = \frac{(V1 - V2)^2}{2g} \tag{14}$$

where V1 is the upstream flow velocity and V2 is the downstream flow velocity.

Transition losses

Abrupt changes in pipe size are accomplished by high energy losses. In order to reduce the losses due to a sudden expansion or contraction, structures may be designed which provide for a smooth transition for the change in pipe size. The transition losses, H_i , can be estimated as a function of the change in the velocity head due to the change in pipe size by

$$H_{t} = \begin{cases} K_{t} \cdot (H_{v2} - H_{v1}) & \text{for } H_{v2} > H_{v1} \\ K_{t} \cdot (H_{v1} - H_{v2}) & \text{for } H_{v1} > H_{v2} \end{cases}$$
(15)

where K_t is the transition losses coefficient. Equation (15) is assumed to apply when the transition structure wall of convergence or divergence is less than 5.75 degrees. For angle of convergence or divergence greater than 5.75

degrees, transition losses are computed by the emperical relationship

$$H_t = 3.5 \cdot (\text{Tan}(0.00872665 \cdot \text{delta}))^{1.22}$$
 (16)

where delta (see Fig. 8) is the total transition angle which is equal to twice the angle of convergence or divergence.

Friction losses due to the transition structure are also included in the transition losses.

Junction losses

The junction losses due to the confluence of flows of a mainline flow with one or two lateral pipeline flows may be estimated by a pressure plus momentum analysis. For example, the City of Los Angeles' Thompson equation relates the pressure plus momentum to the change in HGL by

$$\Delta$$
HGL=

$$\frac{Q_2V_2 - Q_1V_1\cos(\text{ang 1}) - Q_3V_3\cos(\text{ang 3}) - Q_4V_4\cos(\text{ang 4})}{g(A_1 + A_2)/2}$$
(17)

where

 $Q_1, V_1, A_1 = \text{upstream flow rate, flow velocity, and pipe area}$

 Q_2, V_2, A_2 = downstream flow rate, flow velocity, and pipe area

 Q_3, V_3 = lateral flow rate, and flow velocity

 Q_4 , V_4 = lateral flow rate, and flow velocity

ang!=angle of confluence between upstream and downstream pipes

ang3, ang4 = angles of confluence between laterals and downstream pipes

Friction losses are computed using equation (8) to estimate the friction slope for both the upstream and downstream reaches. Using the average of the two friction slopes, the friction loss, H_f , is computed based on the length of the junction structure. Should flows enter the junction structure through an inlet constructed at the top of the structure (see Fig. 9), an additional entrance loss may be included and can be estimated as a loss associated to a catch basin inlet, H_{ch} , where

$$H_{cb} = 0.20H_{v} \tag{18}$$

The junction losses can then be expressed as

$$H_j = HGL + H_{v1} - H_{v2} + H_{cb} + H_f$$
 (19)

The above pressure-plus-momentum equation is a crude approximation of the governing integral equation. In the

Fig. 8. Transition loss model geometry

Fig. 9. Junction loss model geometry

computer program, the manhole loss of equation (10) is also computed and used for H_i whenever greater.

Catch basin losses

Inlets into the storm drain system (or catch basins) are often designed in anticipation that both the HGL and EGL coincide with the ponded water surface within the inlet. Consequently, the kinetic energy of flow (or velocity head) and any losses due to the entrance of the flow into the pipeline must be accounted for in the computation of the EGL within the basin. The entrance losses can be estimated as

$$H_{cb} = K_{cb} \cdot H_v \tag{20}$$

where K_{cb} is an entrance-losses coefficient which is experimentally determined. In the program, $K_{cb} = 0.20$.

PROFILE CALCULATION

Nonpressure flow in drainage reach

In nonpressure flow systems the gradually varied flow profiles¹ are generally computed by using any of three popular methods, namely, the graphical-integration method, the direct-integration method, and the standard step method. The standard step method¹ continues to be the most commonly used.

In the standard step method, the computation of the flow depth is carried out on a station basis where the hydraulic characteristics are known. The computation procedure is a trial and error method to balance the energy equation.

For convenience, the position of the water surface is measured with respect to a horizontal datum. The water surface elevations above the datum at the two end sections can be expressed as (Fig. 1b)

$$Z_A = y_A + z_A \tag{21}$$

and

$$Z_B = y_B + z_B \tag{22}$$

The friction losses are estimated between points A and B by

$$h_f = S_f dx = (S_A + S_B) dx/2$$
 (23)

where S_f can be taken as the average of the friction slopes at the two end sections. The total head at sections A and B can be equated by the energy equation

$$S_0 dx + y_A + \alpha_A V_A^2 / 2g = y_B + \alpha_B V_B^2 / 2g + S_f dx + h_e$$
 (24)

By substitution, the following is written

$$Z_A + c_A V_A^2 / 2g = Z_B + c_B V_B^2 / 2g + h_T + h_E$$
 (25)

where he is the eddy loss defined by

$$h_a = k(\alpha V^2/2a)$$

where

k = 0 to 0.1 for gradually converging reaches

k = 0 to 0.2 for gradually diverging reaches

k = 0.5 for abrupt expansion and contraction

k = 0 for prismatic and regular channel

The total heads at the two end sections A and B are

$$H_A = Z_A + c_A V_A^2 / 2g \tag{26}$$

and

$$H_B = Z_B + c_B V_B^2 / 2g \tag{27}$$

Using equations (26) and (27), equation (25) can be expressed as

$$H_A = H_B + h_f + h_e \tag{28}$$

Given the values of H_A (or H_B), the energy head for H_B (or H_A) is computed by estimating possible flowdepths until the governing energy equations are satisfied.

Pressure flow in drainage reach

In a pressure flow system, the calculations proceed upstream. The EGL for the upstream point of the study reach can be estimated by adding the proper head losses to the downstream EGL values. The HGL for the upstream section of the study reach is computed by subtracting the velocity head H_v from the EGL, i.e., $HGL = EGL - H_v$.

Flow sealed or unsealed in drainage reach

Flow may seal or unseal in any drainage reach. If the design pipe slope is steeper than the hydraulic gradient for the conduit selected, the conduit may unseal. If the design pipe slope is milder than the hydraulic gradient for the conduit selected, the conduit may seal. In both cases, sufficient pipe length must exist in order for flow to seal or unseal at a downstream section. Should flow seal in a drainage reach (Fig. 10a), the length of pipe under pressure can be estimated by

$$L = \frac{y_2 - D}{S_0 - S_E} \tag{29}$$

Flow seals in drainage reach

Flow unseals in drainage reach

Fig. 10. Flow seals or unseals in a drainage reach

Table 4. Logic of profile determination

Pressu			
Upstream analysis	Downstream analysis	Flow regime	
upstream section upstream	> upstream section supstream	Subcritical flow	
section downstream section	section section	Supercritical flow	
upstream section downstream section	< downstream section ≥ downstream section	Hydraulic jump	

Table 5. Storm drain computer model programs

Program	Description
1	Main menu
2	Friction losses
3	Manhole losses
4	Bend losses
5	Sudden enlargement losses
6	Junction losses
7	Angle point losses
8	Sudden contraction losses
9	Catch basin losses
10	Transition losses

where

 y_2 = pressure head at downstream section

= diameter of pipe

 S_0 = designed slope of reach

 S_F = friction slope of reach

Should flow unseal in a drainage reach (Fig. 10b), the gradually varied flow profile proceeds until the depth reach the pipe diameter. Thereafter, the pressure flow friction losses is used to estimate the HGL and EGL for the upstream section.

Hydraulic jump in drainage reach

A hydraulic jump in a drainage reach can occur only when upstream flow is in a supercritical flow regime and the downstream flow is in a subcritical flow regime. Both the upstream and downstream hydraulic analysis should be performed in order to approximate the gradually varied flow profile for this drainage reach.

HGL after head losses

At pipe enlargement or reduction locations, the pipe sizes change. The new water depth (nonpressure flow) or the new pressure head (pressure flow) should be adjusted according to the changes of pipe size. After changing in pipe size, the specific energy can be estimated for the new pipe sizes. Then a new specific energy curve is constructed so that the new water depth or pressure head can be determined with respect to the new specific energy. Notice that the water depth cannot be greater than the critical depth when the flow analysis proceeds downstream, and the water depth or pressure head cannot be less than the critical depth when the flow analysis proceeds upstream. When pipe sizes remain constant, the above procedure should be followed without constructing a new specific energy curve. For head losses which depend upon both upstream and downstream velocity head, or iteration procedure is used to balance the head losses with respect to the upstream and downstream velocity head.

Profile determination

For each drainage reach, the pressure plus momentum values are calculated for both upstream and downstream analyses at downstream and upstream sections. Higher pressure plus momentum values will be used to determine the water surface profile (see Table 4).

STORM DRAIN COMPUTER MODEL

A storm drain computer model based on the storm drain pressure flow model6 was developed to illustrate the hydraulic analysis procedures. This program employed the user-friendly, form fill-out data technique2 to increase the user efficiency, and decrease the total cost of engineering design process. The storm drain computer model is composed of a Main Menu program and nine subroutine analysis procedures. The model is developed by linking the Main Menu selection program to each subroutine in order to enable the engineer to branch to the desired analysis procedure when optioned. The various energy loss calculation options are listed in Table 5.

Data	entry	for	various	programs	are	depicted	as
follows:							

PROGRAM 1: DATA ENTRY

pantrol is :ALLOVASLE	Specified	H\$N:"
Enter proe	flowline elevation of model point ===> VALUES ARE [-99999.99] TO (+99999.99]	"Ef E.,
Enter pres	sure flow pipe diameter(IMCHES)	p
Enter pres	Sure pipe (LDV(CFS)	-a
point	med hydrautic grade line(HGL) at nodal IS EMEAGY GRADE LINE! WALUES ARE (-99999.99] TO 1-99990.99]	"#5L"

Enter counstream node number	*25***
Enter upstream node number	"1N2"
PRESSURE PIPE FLOW PROCESSES:	
18 Fereston Losses	
2= Manhole Losses	
Jr Fipe-pend Lasses	
4= Sudgen Papementargement	
5= Junction Lasses	
6= Angle-point Losses	
7. Sugger Pipe Reduction	
8= Catch Basin Entrance Losses	
9= Transition Losses	man and it
Select pressure pipe flow process ===>	KUDE
Enter plac flowsine elevation of mode number ===> :ALLOWABLE VALUES ARE (-99999,998) TO (-99999,998)	"E. 6"
Select pressure pipe flow process ===>	"KOD€"

PROGRAM 2: DATA ENTRY

Enter pressure pipe 1Low(CFS:	"2"
Enter pipe diameter(INCRES)	
Enter Length of pipe(FEET)	
Enter mannings friction factor	FEE> FAN"

PROGRAM 3: DATA ENTRY

		\
ļ	Enter pressure pipe flow(CFS)	Pp
1	Enter pipe diameter(INCHES)	""
ļ		
١		
	Tipe: Ext. to leave program; Top to go to top of page	
	Vanage .	

PROGRAM 4: DATA ENTRY

Enter pressure pipe flow(CfS)	Enter pressure bloe flox((f5)		
Enter pressure pipe (tokilis) (10000000) Enter pipe dismeter(INCMSS)	Enter pipe disaster (INCMES). Enter pipe disaster(INCMES). ***TALLOWABLE VALUES ARE (3) TG [240] ***TALLOWABLE VALUES ARE (3) TG [240] ***TALLOWABLE VALUES ARE (3) TO [90]	DATA ENTRY FOR PIPE-BEND LOSSES	
######################################	FALLOWABLE VALUES ARE C3] TG [240] Enter pipe bend angle OEGREES)	Enter pressure pipe flow(Cf5)	-g.1
ALLOWABLE VALUES ARE EDJ TO E90] Enter tength of phoeffeet)	ALLOWABLE VALUES ARE EDJ TO E90] Enter tength of phoeffeet)	Enter pice dismeter(INCMES)	-0
Enter mannings friction factor	Enter mannings friction factor	Enter pipe bend angle(DEGREES)	"BELTA"
Enter mannings friggion recommendation	Enter mannings friggion recommendation	Enter Length of pipe(FEET)	-*1-
		Enter mannings friction factor	"IN"
TYPE: EXIT to seave program ; TOP to go to top of page			

PROGRAM 6: DATA ENTRY

CATA ENTRY FOR SUDDEN PIPE ENCARGEMENT	
Enter pressure pipe flow(CFS)	Ma"
Enter downstreem pide diameter(INCHES)	"52"
Enter upstream pipe diameter(INCHES:	TE 1"
TYPE: ELIT to Leave program ; TOP to go to Lop of page	

PROGRAM 6: DATA ENTRY

nter downstream pipe flow(CFS)	-g
TTE UDSTREAM DIDE TIONICES:	"E3.,
nter first Lateral pressure pipe flow(EP\$) ===>	~03"
nter second lateral pressure pipe flow(CF5) ==> ALLOWABLE VALUES ARE COL TO [9999.99]	"44"
stch pasnn flow(CFS) into junction structure ===>	-62.

diameter	INCHES)		===>	-07
[3] 10 [2	40)			
ametertin	ся€5)		===>	mb 2
[3] TO [2]	40 1			
	4.000000			-63
pr diame:	ELCINCHE?	,	,	•
rn) to [2	ип 1			
ipe diane	ter (INCHE		, tt=>	104
NT, ENTER	(0)			
[0] 10 [2	145]			
	ameter (IN [3] TO [2] pe diamet NT, ENTER (0) TO [2 lipe diameter, ENTER	13) TO C240] ameter([NCMES) [3] TO C240] pe diameter(]NCMES; NT, ENTER () C03 TO C240]	(3) TO (240) ameter((NCMES))	ameter((NCMES)

DATA ENTRY FOR JUNCTION LOSSES PAGE 3	
burn Burn Law Adultion manage	
Enter wastream pipe angle with respect to	
downstream pipe(DEGREES)	"DELTA!"
:ALLOMABLE VALUES ARE [O] TO 190)	
Enter first lateral pine angle with respect to	
downstream once (DEGREES)	"DEL TAR"
:ALLOWARLE VALUES ARE [C] TO [90]	***************************************
Enter second teteral pipe angle with respect to downstream pipe(DEGREES)	Harry Wales
ALLOWABLE VALUES ARE COD TO [90]	"DELTAL"
CALLORABLE TACOES ARE COS TO ESOS S	
Enter junction structure (ength(FEET)	"XL"
:ALLOWABLE VALUES ARE C13 TO C100 3	
TYPE: Exil to leave program ; TOP to go to top of page	
; BACK to go back one page	
, ones to go oper one page	
·	

PROGRAM P. DATA ENTRY

---bara entry for Junction Losses---Page 4

Enter downstream pine mannings friction factor..... ===> "YN2"

;ALLOWARLE VALUES ARE [.008 3 TO [.500]

Enter unstream pine mannings friction factor...... ===> "YN1"
;ALLOWARLE VALUES ARE [.008 3 TO [.500]

PROGRAM 8: DATA ENTRY

PROGRAM 7: DATA ENTRY

APPLICATION

An example problem taken from the Highway Design Manual of Instruction (the Los Angeles Road Department) is used to illustrate the capability of the storm drain computer model. The analysed drainage system is depicted on Fig. 11. The downstream hydraulic grade line is assumed to be at elevation 196.70. The upstream sections 14 and 15 are the transition structure and box structure respectively. The box structures were not analysed because of the limitation of the model (circular section only). Therefore, the upstream control depth was assumed to be the normal depth (1.61 ft) of that reach. In the reach between sections 12 and 14, the water surface was defaulted to normal depth due to the steep slope. A flow depth of 1.84 ft was estimated after flow

Fig. 11. Hydraulics example

Fig. 11. Hydraulics example (continued)

passing through a manhole structure at section 12. A hydraulic jump was predicted by the storm drain computer model and the location of the pressure plus momentum balance occurred about 255,48 ft from section 12. A gradually varied flow profile was also calculated by the model for this nonpressure segment. The example calculated in the manual used the normal depth (1.69 ft) for the nonpressure flow segment. The normal depth provided less pressure plus momentum forces to push the flow downstream (271.5 ft) as model predicted (322.8 ft). Pressure system calculations were well-predicted by the model when compared to the manual results from section 11 to section 1.

Computer model results are included in the Appendix. First the nodal point status table which contains the flow depth, pressure head and pressure plus momentum for upstream and downstream analyses is printed for user's convenience. The section (node) numbers are arranged from upstream to downstream. User specified head loss options are also printed. 'Hydraulic jump' will be printed when it occurred in the pipe reach. Control pressure head on flow depth of each section is followed by an asterisk for user's convenience. Entire hydraulic analysis is also included after the nodal point status table. Head losses calculations, HGL, EGL and flow line are printed for each section. Only one gradually varied flow profile will be selected with respect to the control flow depth. In a reach where hydraulic jump occurs, both supercritical and subcritical flow profiles are printed. However, the determination of the location and length of hydraulic jumps is not included in the programming. Rather, this type of information is currently indeterminate and is left to the engineer for special consideration on a case by case basis. A common approach is to assume the jump to occur as a shock whereby the conjugate depths are matched at a single point, with the length of the jump being assumed as zero. The type of solution may be unacceptable in cases where a pipe lateral enters the main channel immediately upstream of such an assumed hydraulic jump shock, and the hydraulic control for the pipeline is assumed to be the lower conjugate depth.

DISCUSSIONS

The storm drain computer model has the capability to analyse a general storm drain pipe system. Furthermore, it can analyse hydraulic jumps, pressure and nonpressure flow in any drainage reach. Gradually varied flow profiles are approximated by the standard step method when nonpressure flow occurs in any pipe reach. This analysis provided the hydraulic engineer a better understanding of the storm drain system hydraulics when pressure and nonpressure flow co-exist in the storm drain system.

Because the computer program is interactive, the pipe system can be quickly designed without the use of a data batch-file approach.

REFERENCES

- Chow, V. T. Open Channel Hydraulics, McGraw-Hill Company,
- Clements, J. M. and Hromadka II, T. V. User-Friendly, Form Fillout Data for Engineering Software, Microsoftware for Engineers, 1986, 2(1), 1320
- Design Manual: Channel Hydraulics and Structures, Orange County Flood District, OCEMA, California, 1972

- Design Manual: Hydraulic, Los Angeles County Flood Control District, Los Angeles, California, 1970
- Design Manual: Los Angeles County Road Department, Los Angeles, California, 1972
- Hromadka II, T. V., Clements, J. M. and Saluja, H. Computer Method in Urban Watershed Hydraulics, Lighthouse Publications, Mission Viejo, California, 1984

APPENDIX: EXAMPLE RESULTS

********	*********	***********	**	*****

	GRADUALLY VARI	TED FLOW ANALYSIS F	OR PIPE SYSTI	ЕЯ
	(Note: "*" ir	AL POINT STATUS TAB releates modal poin	t data usad !)
NODE MODE	UPSTRE: EL PRESSURE	PRESSURE+ NOMENTUM (POUNDS: 2665.75	DOWNSTR)	EAM RUN
NUMBER PROCE	ESS HEAD(FT)	MONENTUM (POUNDS)	DEPTH (FT)	MOMENTUM (POUNDS)
14.00- FRIC1	2.23 FION	2665.75	1.61*	3254.63
12.00- JUNC1	3.56	2991.17	1.61=	3254.67
12.00-	2.24	3019.4B	1.34*	3316.98
F FRICT	FION) H 5.76*	IYDRAULIC JUMP 3890.39	1.69	
MANEC	DLE			3545.29
11.00- FRICT	5.72* FION	3881.40	1.71	3509.36
10.00- i Angle	6.20°	4000.86	1.71	3525.57
10.00-	6.07*	3967,96	1.71	3525.57
+ FRICT 9.00-	6.05*	3963.72	1.78	3406.41
ANGLE				
FRICT	NOI	3930.82	1.78	3406,41
7.00- 1 JUNCT	5.91* TON	3928.70	1.80	1373.73
7.00-	5.57*	4818.52	2.39	3913.90
∤ FRICT 2.00-	5.56*	4813.80	2.29	4014.39
JUNCT 2.00-	ION 5.49*			
FRICT	ION+BEND	5649.63	2.93	4522.51
1.00-	6.70*	6277.10	2.29	5247,53
RZENUM MUNIKAK		ANCES USED IN EACH	PROFILE = 2	5
NOTE: STEADY F	LOW HYDRAULIC	HEAD-LOSS COMPUTATI	ONS BASED ON	THE MOST
CONSERVATIVE F DESIGN NAMUALS	ORNULAE FROM T	RE CURRENT LACED, LA	CFCD. AND OC	ENY
	*****	£2322*********	*******	********
UPSTREAM PIPE NODE NUMBER =	FLOW CONTROL D	ATA: FLOWLING ELEV	47175M - 1K	1 10
ASSUMED UPSTRE	AM CONTROL HGL	a 252.89		
NODE 14.00	: HG1: = 1 252	.890>; EGL = < 261.0	991171011717	- / 361 3265
FLOW PROCESS F	ROM NOTE. 14	60 TO NOR 11 0	*******************************	***********
				1
UPSTREAM NODE	14.60 E)	.GO TO NODE 12.0 LEVATION = 251.28	ILTON IZ Z	1 UPERCRITICAL)
CALCULATE FRIC	Tion Losses (LAC	FC0):		
CALCULATE FRIC	Tion Losses (LAC	FC0):		
CALCULATE PRIC PIPE FLOW = PIPE LENGTH =	Tion Losses (LA) 70.00 CFS 274.00 FEE	CFCD): PIPE DIA MANNING'	METER = 27.0 5 N = .01	00 INCHES 200
CALCULATE FRICTION = PIPE FLOW = PIPE LENGTH = WORNAL DEPTH(F	TION LOSSES (LA) 70.00 CFS 274.00 FEE T) = 1.61	CRITICAL	METER = 27.0 5 N = .01 DEPTH(FT) =	00 INCHES 200
CALCULATE PRIC' PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F	TION LOSSES (LAC 70.00 CFS 274.00 FEET T) = 1.61	CRITICAL CONTROL CRITICAL CRITICAL CREPTH(FT) = 1.	METER = 27.01: 5 N = .01: DEPTH(FT) =	00 INCHES 200 2.23
CALCULATE FRIC' PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F- UPSTREAM CONTR-	TION LOSSES (LA 70.00 CFS 274.00 FEET T) = 1.61 DL ASSUMED FLOW ED FLOW PROFILE	FCD): PIPE DIA CRITICAL CREPTHIFT) = 1. CCOMPUTED INFORMAT	METER = 27.6 5 N = .01 DEPTH(TT) =	00 INCHES 200 2.23
CALCULATE FRICTIFIE FLOW = PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F UPSTREAM CONTR GRADUALLY VARIO	TION LOSSES (LACTION LOSSES (LACTION LOSSES (LACTION LACTION LACTION LACTION LACTION LOSSES (LACTION LACTION L	FCD): PIPE GIA MANNING' CRITICAL (DEPTH(FT) = 1.	METER = 27.0 5 N = .01 DEPTH(FT) =	200 INCHES
CALCULATE FRICTIFIE FLOW = PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F UPSTREAM CONTR GRADUALLY VARIO	TION LOSSES (LACTION LOSSES (LACTION LOSSES (LACTION LACTION LACTION LACTION LACTION LOSSES (LACTION LACTION L	FCD): PIPE GIA MANNING' CRITICAL (DEPTH(FT) = 1.	METER = 27.0 5 N = .01 DEPTH(FT) =	200 INCHES
CALCULATE FRICTIFIE FLOW = PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F UPSTREAM CONTR GRADUALLY VARIO	TION LOSSES (LACTION LOSSES (LACTION LOSSES (LACTION LACTION LACTION LACTION LACTION LOSSES (LACTION LACTION L	FCD): PIPE GIA MANNING' CRITICAL (DEPTH(FT) = 1.	METER = 27.0 5 N = .01 DEPTH(FT) =	200 INCHES
CALCULATE FRIC FIPE FLOW = PIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTR GRADUALLY VARI DISTANCE FROM CONTROL (FT) .000 .274.900	TION LOSSES (LAC 70.00 CF) 274.00 FEE T) = 1.61 DL ASSUMED FLOY ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.610	FCD): F PIPE DIX F MANNING: CRITICAL (DEPTH FT) = 1. COMPUTED INFORMAT VELOCITY SP (FT/SEC) ENE 22.986	METER = 276 N = .01 DEPTH(FT) = 61 SCIPIC REFUEL NO. 9.819 9.819	200 INCHES 200 2.23
CALCULATE FRIC FIPE FLOW = PIPE LEMGTH = NORMAL DEPTH(F UPSTREAM CONTR GRADUALLY VARI DISTANCE FROM CONTROL(FT) .000 274.000 NODE 12.00	TION LOSSES (LAC 70.00 CFS 274.00 FEST T? = 1.61 DL ASSUMED FLOY ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.610 E HOL = < 236.	FCO): F PIPE DIX F HANNING: CRITICAL (DEPTH FT) = 1. C COMPUTED INFORMAT VELOCITY SP (FT/SEC) EME 22.986 810):EGL= < 245.0	METER = 276 N = .01 DEPTH(FT) = 61 SCIPIC REFUEL NO. 9.819 9.819	200 INCHES 200 2.23
CALCULATE FRIC' PIPE FLOW - PIPE LENGTH = MORMAL DEPTH(F' USSTREAM CONTR CRADUALLY VARII DISTANCE FROM CONTROL (FT)	TION LOSSES(LA(70.00 FEF 274.00 FFS 274.00 FFS T) = 1.61 DL ASSUMED FLOV ED FLOW PROFILM PRESSURE HEAD(FT) 1.610 1.610 1.610	FCO): F PIPE DIA F MANNING' CRITICAL CRITTCAL COMPUTED INFORMAT VELOCITY SP (FT/SEC) ENE 22.985 22.986 810):EGL= < 245.0	METER = 27 5 N = .01. DEPTH(FT) = 61. ECIFIC RGY(FT) NG 9.819 9.819 15>; FLOWLINE	200 INCHES 200 2.23 PRESSURE+ WHENTUM (POUNDS) 3254.61 3254.67
CALCULATE FRICE FIFE FLOW - FIFE LEMGTH - NORMAL DEPTH(F UPSTREAM CONTR CRADUALLY VARI DISTANCE FROM CONTROL (FI)	TION LOSSES (LA(70.00 CFS 274.00 CFS 274.00 CFS T) = 1.61 DL ASSUMED FLOW ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.610 1.610 2.HGL = < 236. 236.	FCO): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = .61. ECIFIC RGY(FT) NC 9.819 9.819 15); FLOWLINE: ACCODE = .61. CFLOW IS SC	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRIC' PIPE FLOW - PIPE LENGTH = MORMAL DEPTH(F' USSTREAM CONTR CRADUALLY VARII DISTANCE FROM CONTROL (FT)	TION LOSSES(LA(70.00 CFS 274.00 FEF 274.00 FEF T) = 1.61 DL ASSUMED FLOW PRESSURE HEAD(FT) 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610 1.610	FCO): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = .61. ECIFIC RGY(FT) NC 9.819 9.819 15); FLOWLINE: ACCODE = .61. CFLOW IS SC	200 INCHES 200 2.23 PRESSURE+ WHENTUM (POUNDS) 3254.61 3254.67
CALCULATE FRICE FIPE FLOW = FIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTRO GRADUALLY VARI DISTANCE FROM CONTROL (FT) .000 .274.990 NODE 12.00: FLOW PROCESS FF UPSTREAM NODE CALCULATE JUNC!	TION LOSSES (LAC 70.00 CF) 274.00 FEE 274.00 FEE T) = 1.61 DL ASSUMED FLOW PROFILE PRESSURE HEAD (FT) 1.610 1.610 1.610 1.000 NODE 12.12.00 EL 12.00 EL 12.	FCD): PIPE DIX MANNING	METER = 27 5 N = .01. DEPTH(FT) = 61. ECIFIC REVIFT: NO 9.819 9.819 15 CODE = (FLOW IS SO	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRIC' PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F' USTREAM CONTR GRADUALLY VARII DISTANCE FROM CONTROL(FT)	TION LOSSES(LA(70.00 CFS 274.00 FEE 274.00 FEE T) = 1.61 DL ASSUMED FLOW ED FLOW PROFILM PRESSURE MEAD(FT) 1.610 1.610 1.610 2.12.00 EL PROM NOWE 12. 12.00 EL PROM NOWE 13. 12.00 EL PROM NOWE 13. 12.00 EL PROM NOWE 13. 13.00 EL PROM NOWE 13. 14.00 EL PROM NOWE 13. 15.00 EL PROM NOWE	FCO): PIPE DIX RANNING' CRITICAL CRITICAL	METER = 27 5 N = .01. DEPTH(FT) = .51 ECIPIC REF(FT) NC 9.819 9.819 15 >; FLOWLINE= (FLOW IS SC	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRICE FIPE FLOW = FIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTRO GRADUALLY VARI DISTANCE FROM CONTROL(FT)	TION LOSSES (LAC 70.00 CF) 70.00 CF	FCO): PIPE DIX RANNING' CRITICAL CRITICAL	METER = 27 5 N = .01. DEPTH(FT! = 61. EXECUTE NO P. 819 9.819 15 : FLOWLINE = CRITICAL DEPTH(FT.) 2.23 2.24	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRICE FIPE FLOW = FIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTRO GRADUALLY VARI DISTANCE FROM CONTROL(FT)	TION LOSSES (LAC 70.00 CF) 70.00 CF	FCO): PIPE DIX RANNING' CRITICAL CRITICAL	METER = 27 5 N = .01. DEPTH(FT) = .61. ECIFIC RGY(FT) NC 9.819 9.819 15):FLOWLINE CRITICAL DEPTH(FT.) 2.23	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRIC' PIPE FLOW = PIPE LENGTH = MORMAL DEPTH(F' USTREAM CONTR GRADUALLY VARII DISTANCE FROM CONTROL(FT)	TION LOSSES (LAC 70.00 CF) 70.00 CF	FCO): F PIPE DIX F HANNING: CRITICAL CRITICAL COMPUTED INFORMAT VELOCITY SP (FT/SEC) EME 22.986 22.986 810):EGL= < 245.0 00 TO NOBE 12.6 LEVATION = 235.20 METER ANGLE CHES] (DECREES)	METER = 27 5 N = .01. DEPTH(FT) = 61. ECIFIC REFITE NO 9.819 9.819 15 CODE =	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRICE FIPE FLOW = FIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTRO GRADUALLY VARIA DISTANCE FROM CONTROL(FT)	TION LOSSES (LAC 70.00 CF) 274.00 FEET 7.00 CF FEET 7.00	FCO): F PIPE DIX F MANNING: CRITICAL MEPTH;FT) = 1. COMPUTED INFORMAT VELOCITY SP. (FT/SEC) ENEI 22.986 22.986 20.926 20.00 TO NODE 12.6. LEVATION = 235.20 METER ANGLE CRES; 7.00 .00 7.00 -00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00	METER = 27 5 N = .01. DEPTH(FT) = 61. ECIFIC REFITE NO 9.819 9.819 15 CODE =	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRICE PIPE FLOW = PIPE LEMGTH = MORMAL DEPTH(F) UPSTREAM CONTRI CRADUALLY VARI DISTANCE FROM CONTROL (FT)	TION LOSSES (LAK 70.00 CFS 274.00 FEE 77 = 1.61 TO ASSUMED FLOW ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.	FCO): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = 61. ECIFIC REFITE NO 9.819 9.819 15 CODE =	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNDS) 3254.67 4 (235.200)
CALCULATE FRICE FIPE FLOW = FIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTROL GRADUALLY VARIA DISTANCE FROM CONTROL (FT) .000 .274.900 NODE 12.00: FLOW FROCESS FF OPSTREAM NODE CALCULATE JUNCT PIPE UPSTREAM DOWNSTREAM DOWNSTREAM LATERAL #2 LATERAL #2 LATERAL #2 LATERAL #2 LATERAL #3 LATERAL #4 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #5 LATERAL #6 LATERAL #7 LATERAL #6 LATERAL #7 LATERAL #6 LATERAL #7	TION LOSSES (LAK 70.00 CF2 274.00 FEET T) = 1.61 DL ASSUMED FLOD ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.610 12.00 EL PROFILE PROFILE ROM NOBE 12. 12.00 EL PROFILE PROFILE ROM LOSSES: FLOW 12.00 EL PROFILE PROFILE ROM LOSSES: FLOW 12.00 EL PROFILE PROFILE ROM LOSSES: FLOW 10.00 2 75.00 1 00 2 75.00 1	FCD): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = 61. EVERY STATE	200 INCHES 200 2.23 PRESSURE+ DMENTUM (POUNDS) 3254.67 4 (235.200) 5 PERCRITICAL)
CALCULATE FRICE FIPE FLOW = FIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTROL GRADUALLY VARIA DISTANCE FROM CONTROL (FT) .000 .274.900 NODE 12.00: FLOW FROCESS FF OPSTREAM NODE CALCULATE JUNCT PIPE UPSTREAM DOWNSTREAM DOWNSTREAM LATERAL #2 LATERAL #2 LATERAL #2 LATERAL #2 LATERAL #3 LATERAL #4 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #5 LATERAL #6 LATERAL #7 LATERAL #6 LATERAL #7 LATERAL #6 LATERAL #7	TION LOSSES (LAK 70.00 CF2 274.00 FEET T) = 1.61 DL ASSUMED FLOD ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.610 12.00 EL PROFILE PROFILE ROM NOBE 12. 12.00 EL PROFILE PROFILE ROM LOSSES: FLOW 12.00 EL PROFILE PROFILE ROM LOSSES: FLOW 12.00 EL PROFILE PROFILE ROM LOSSES: FLOW 10.00 2 75.00 1 00 2 75.00 1	FCD): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = 61. EVERY STATE	PRESSURE+ MENTUM (POUNDS) 1254.67 (235.200)
CALCULATE FRICE PIPE FLOW - PIPE LENGTH = MORMAL DEPTH(F UPSTREAM CONTR. GRADUALLY VARI DISTANCE FROM CONTROL (FT)	TION LOSSES (LAK 70.00 CFS 274.00 FEET T) = 1.61 TL ASSUMED FLOW ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1.610 1.610 1.610 1.200 EL PROSSES: FLOW DIA (CFS) (LAW 70.00 2 5.00 1 00 2 75.00 2 5.00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1	FCO): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = 61. 10N: ECIFIC RSY(FT) MC 9.819 15): FLOWLINE- CRITICAL DEPTH(FT.) 2.23 2.24 .00 DWNSTREAM = 11CTION LDSS LENTRANCE LOSS LENTRANCE LOSS	200 INCHES 200 2.23 PRESSURD+ DIENTUK (POUNDS) 3254.67 4 (235.200) 5 PRECRITICAL) .01206 21793 FEET
CALCULATE FRICE FIPE FLOW = PIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTRE CALCULATE FROM CONTROL (FT) .000 .274.900 NODE 12.00: FLOW FROCESS FF UPSTREAM NODE CALCULATE JUNCT PIPE UPSTREAM DOWNSTREAM DOWNSTREAM LATERAL #2 LATERAL #2 LATERAL #2 LATERAL #3 LATERAL #4 LATERAL #3 LATERAL #4 LATERAL #5 LATERAL #6 LATERAL #6 LATERAL #6 LATERAL #6 LATERAL #7 LATERAL #8 LATE	TION LOSSES (LAC 70.00 CF 70.0	FCD): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = 61. ===================================	200 INCHES 200 2.23 PRESSURE+ DIBINITUR (POUNTS) 3254.67 4 (235.200) 5 PRECRITICAL) .01206 21793 FEET
CALCULATE FRICE PIPE FLOW = PIPE LENGTH = NORMAL DEPTH(F UPSTREAM CONTROL CARDUALLY VARIA DISTANCE FROM CONTROL (FT)	TION LOSSES (LAK 70.00 CFS 274.00 FEE 77 - 1.61 TO BE SUMED FLOW PRESSURE HEAD(FT) 1.610 PRESSURE HEAD(FT) 1.610 1.610 COS (DELTA1)	FCO): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = 61. ECIFIC RSY(FT: NC	PRESSURE+ PRESSURE+ MENTUR (POUNDS) 1254.61 3254.67 (235.200) DERCRITICAL) .01206 21793 FEET SES:
CALCULATE FRICE PIPE FLOW = PIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTR. GRADUALLY VARIA DISTANCE FROM CONTROL (FT) .000 .274.900 NODE 12.00: PLOW PROCESS FF UPSTREAM NODE CALCULATE JUNCT PIPE UPSTREAM DOWNSTREAM DOWNSTREAM LATERAL #2 .25 LACYCL AND OCEM DY=102*Y2-01*Y1 .04*Y4*COS.UP JUNCTION LEMGTH ENTRANCE LOSSES JUNCTION LOSSES FLOW FROCESS FF	TION LOSSES (LAK 70.00 CFS 274.00 FEET T) = 1.61 TO ASSUMED FLOW ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1	FCO): PIPE DIX CRITICAL	METER = 27 5 N = .01. DEPTH(FT) = 61. 10N: ECIFIC RSY(FT) NC 9.819 19):FLOWLINE- CRITICAL DEPTH(FT.) 2.21 2.24 .86 .00 ECITICAL DEPTH(FT.) 2.21 2.24 .86 .00 ECITICAL DEPTH(FT.) 2.21 2.24 .86 .9997	DO INCHES 200 2.23 PRESSURE+ MENTUM (POUNDS) 1254.61 3254.67 (235.200) 5 PRECRITICAL) .0120621793 FEET .SES: 234.960>
CALCULATE FRICE PIPE FLOW = PIPE LEMGTH = MORMAL DEPTH(F UPSTREAM CONTR. GRADUALLY VARIA DISTANCE FROM CONTROL (FT) .000 .274.900 NODE 12.00: PLOW PROCESS FF UPSTREAM NODE CALCULATE JUNCT PIPE UPSTREAM DOWNSTREAM DOWNSTREAM LATERAL #2 .25 LACYCL AND OCEM DY=102*Y2-01*Y1 .04*Y4*COS.UP JUNCTION LEMGTH ENTRANCE LOSSES JUNCTION LOSSES FLOW FROCESS FF	TION LOSSES (LAK 70.00 CFS 274.00 FEET T) = 1.61 TO ASSUMED FLOW ED FLOW PROFILE PRESSURE HEAD(FT) 1.610 1	FCO): PIPE DIX CRITICAL	METER = 27 5 N = .01. DEPTH(FT) = 61. 10N: ECIFIC RSY(FT) NC 9.819 19):FLOWLINE- CRITICAL DEPTH(FT.) 2.21 2.24 .86 .00 ECITICAL DEPTH(FT.) 2.21 2.24 .86 .00 ECITICAL DEPTH(FT.) 2.21 2.24 .86 .9997	DO INCHES 200 2.23 PRESSURE+ MENTUM (POUNDS) 1254.61 3254.67 (235.200) 5 PRECRITICAL) .0120621793 FEET .SES: 234.960>
CALCULATE FRICE FIPE FLOW FIPE FLOW UPSTREAM CONTRO UPSTREAM CONTRO CONTROL (FT) .000 NODE 12.00 FLOW FROCESS FE UPSTREAM MODE CALCULATE JUNCT FIPE UPSTREAM LATERAL FLOW FROCESS MANNING'S N: UP ENTRANCE LOSSES JUNCTION LOSSES JUNCTION LOSSES JUNCTION LOSSES JUNCTION LOSSES NODE 12.00 FLOW FROCESS FE FLOW FROCESS FROM FLOW FROCESS FROM FLOW FROCESS FROM CALCULATE FROM FLOW FROM FLOW FROM FLOW FROM CALCULATE FROM CALCULATE CAL	TION LOSSES (LAC 70.00 CF 274.00 FEET 7.00 CF 274.00 FEET 7.00 CF 274.00 FEET 7.00 CF 274.00 FEET 7.00 CF 275.00 CF	FCD): PIPE DIX	METER = 27 5 N = .01. DEPTH(FT) = .01. DEPTH(FT) = .01. CON: ECIFIC REFUSE .02. 9.819 9.819 9.819 9.819 15:;FLOWLINE= CRITICAL DEPTH(FT.) 2.21 2.24 86 .00 DEPTH(FT.) 2.23 2.24 86 .00 DEPTH(FT.) 2.21 2.24 86 .00 DEPTH(FT.) 2.23 2.24 86 .00 DEPTH(FT.) 2.21 2.24 86 .00 DEPTH(FT.) 3.50 DEPTH(FT.) 3.60 DEPTH(FT.) 3.70 DEPTH(FT.)	DO INCHES 200 2.23 PRESSURE+ DMENTUR (POUNDS) 3254.61 3254.67 4 (235.200) 5 DPERCRITICAL) .0120621793 FEET .SEES:
CALCULATE FRICE FIPE FLOW FIPE FLOW UPSTREAM CONTRO UPSTREAM CONTRO CONTROL (FT) .000 NODE 12.00 FLOW FROCESS FE UPSTREAM MODE CALCULATE JUNCT FIPE UPSTREAM LATERAL FLOW FROCESS MANNING'S N: UP ENTRANCE LOSSES JUNCTION LOSSES JUNCTION LOSSES JUNCTION LOSSES JUNCTION LOSSES NODE 12.00 FLOW FROCESS FE FLOW FROCESS FROM FLOW FROCESS FROM FLOW FROCESS FROM CALCULATE FROM FLOW FROM FLOW FROM FLOW FROM CALCULATE FROM CALCULATE CAL	TION LOSSES (LAC 70.00 CF 274.00 FEET 7.00 CF 274.00 FEET 7.00 CF 274.00 FEET 7.00 CF 274.00 FEET 7.00 CF 275.00 CF	FCD): PIPE DIX CRITICAL CRITICAL	METER = 27 5 N = .01. DEPTH(FT) = .01. DEPTH(FT) = .01. CON: ECIFIC REFUSE .02. 9.819 9.819 9.819 9.819 15:;FLOWLINE= CRITICAL DEPTH(FT.) 2.21 2.24 86 .00 DEPTH(FT.) 2.23 2.24 86 .00 DEPTH(FT.) 2.21 2.24 86 .00 DEPTH(FT.) 2.23 2.24 86 .00 DEPTH(FT.) 2.21 2.24 86 .00 DEPTH(FT.) 3.50 DEPTH(FT.) 3.60 DEPTH(FT.) 3.70 DEPTH(FT.)	DO INCHES 200 2.23 PRESSURE+ DMENTUR (POUNDS) 3254.61 3254.67 4 (235.200) 5 DPERCRITICAL) .0120621793 FEET .SEES:

```
HYDRAUGIC JUSE: DOWNSTREAM RUN ANALYSIS RESULTS
                                                                                                              FLOW PROCESS FROM NODE
UPSTREAM NODE 9.00
                                                                                                                                               9.00 TO NODE 9.00 IS CODE = 6
ELEVATION = 203.06 (FLOW IS UNDER PRESSURE)
   NORMAL DEPTROFT: = 1.69 CRITICAL DEPTROFT: 2.24
                                                                                                              CALCULATE ANGLE-POINT LOSSES(LACED):
                                                                                                              CALCULATE ANGLE-POINT LOSSES(LACRD):
PIPE FLOW = 75.00 CFS
PIPE ANGLE-POINT = 8.00 DEGREES
PLOW VELOCITY = 18.86 FEBT/SEC.

HAPT=KA*(VELOCITY HEAD) = ( .02400)*( 5.525) = .133
  UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT: = 1.84
  GRADUALLY VARIED FLOW PROFILE COMPUTED IMPORMATION:
                                                                        PRESSURE-
MOMENTUM PROUNDS:
3915,98
5505,10
  DISTANCE FROM
                         FLOW DEPTH
                                       VELOCITY
                                                         SPECIPIO
   CONTROL (FT)
                                        (FT/SEC)
                                                        EMERGY (FT)
                                                                                                              NODE 9.00 : NGL = < 208.978); EGL= < 214.503); FLOWLINE= < 203.060)
                              1.834
            .000
3.92!
                                          21.563
21.627
                                                                                                            8.039
                              1.826
                                          21.693
21.789
                                                              9.138
                                                                                                              FLOW PROCESS FROM NODE
                                                                                                                                               9.00 TO NOBE 7.00 IS CODE = 1
ELEVATION = 203.06 (FLOW IS UNDER PRESSURE)
          12,371
                                                                                                              UPSTREAM NODE
                                                                                                                                    9.00
          15.939
                                                                                3350.20
1 51.35
3367,50
                              1.814
                                          21.826
                                                              9.016
9.054
                              1.808
                                                                                                              CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 75.00 CFS
PIPE LENGTH = 48.00 FEET
SF=(Q/K)**2 = (1 75.00)/( 335
           26.874
32.299
38.075
                              1.802
1.796
1.790
1.784
                                                              9.297
                                                              9.338
                                                                                                                                                    MANNING'5 N = 335.512))**2 = .04997
                                          22,163
                                                                                3385.27
                                                                                                              SF=(Q/K)**2 = (| 75_00}/( 335_512))**2:
HF=L*SF = ( 48_00)*[,04997) = 2,399
           44.244
                                          22.173
                                                              9.423
                                                                                3334.33
                                         22.173
22.245
23.318
22.391
22.466
22.543
22.617
          50,857
57,977
65,677
74,051
                                                              9.467
9.511
9.556
                                                                                3403.52
3410.82
3400.25
                                                                                                                        7.00 : HGL = ( 206.580); EGL= ( 212.105); FLOWLINE= ( 200.670)
                                                              9.£00
                                                                                                            1,754
         83.017
94.1.5
104.57
                                                                                3441.48
3451.37
                                                              9.649
                                                                                                                                              7.00 TO NODE 7.00 IS CODE = 5
ELEVATION = 200.67 (FLOW IS UNDER FRESSURE)
                                                                                                              FLOW PROCESS FROM NODE
                              1.748
                                                                                                              UPSTREAM NODE
                                                                                                                                    7.00
                                          22.693
22.771
23.849
                                                              744
                              1.742
                                                                                3451.00
          137.236
131.687
                                                                                                              CALCULATE JUNCTION LOSSES:
                                                                                                                                 FLOW
(CFS)
75.00
                                                                                                                   PIPE
                                          22,929
          168.474
                              1,719
                                          21,009
                                                              9.944
                                                                                3500.19
                                                                                                                                                              .00
                                                                                                                 UPSTREAM
                                                                                                                                                27.00
33.00
                                                                                                                                                                              2.24
         193,100
025,077
170,43
                              1,713
                                          23,090
                                                                                JE10.76
3533.47
                                                                                                                DOWNSTREAM
                                                                                                                                 100.00
                                                            10.049
                                                                                                                                                              30.00
                               .701
                                                                                                                                   .00 .00 .00
.00===05 EQUALS BASIN INPUT===
                                                                                                                   Q5
         400.006
                             1.695
                                         23,339
                                                            10.158
                                                                                J545.29
                                                                                                              LACTCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=102**2-01**1**COS(DELTA1)-03**03**COS(DELTA2;-04***COS(DELTA4))/((A1+A2)*16.1)
  HYDRAULIC DUMF: UPSTREAM RUN ANALYSIS RESULTS
                    DOWNSTREAM CONTROL ASSUMED PRESSURE MEAD(FT) =
                                                   ...
varennesennesennesennesenskilt.77737
  PRESSURE FLOW PROFILE COMPOTED INFORMATION:
                         PRESSURE
                                       VELOCITY
  DISTANCE FROM
                 HEAD(FT)
) 5.755
; 2.250
                                                                        MOMENTUM (POUNDS)
   COMPRODIET)
                                      (FT/SEC)
                                                       ENERGY (FT)
 000 5.755 18.863 11.280 349.463 5.290 14.863 7.775
                                                                                                                        7.00 : HGL = < 205.653); EGL= < 210.054); FLOWLINE= < 200.080)
                                                                                                                                              7.GO TO NODE 2.00 IS CODE = 1
ELEVATION = 200.08 (FLOW IS UNDER PRESSURE)
                                                                                                              FLOW PROCESS FROM NODE UPSTREAM NODE 7.00
                            GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
                                                                                                              CALCULATE FRICTION LOSSES(LACFOD):
  DISTANCE FROM
                        FLOW DEPTH VELOCITY
                                                        SPECIFIC
                                                                        PRESSURS+
NOMENTUR (POUNDS)
                                                                                                              PIPE LENGTH =
                                                                                                                               100.00 CFS
200.00 FEET
                                                                                                                                                             PIPE DIAMETER = 33.00 INCHES
                                      (FT/SEC)
18.857
                                                       ENERGY (FT:
                             1₹T)
2.250
                                                                                                                                                                                  .01200
                                                                                                                                                             MANNING'S N
                                                       7.775
7.770
                                                                                                              SF=(Q/X)**2 = (( 100.00)/( 572.940))**2 = .03046

HF=L*SF = ( 200.00)*(.03046) = 6.093

NODE 2.00 : HGL = ( 199.560):BGL= ( 203.962):FLOWLINE= ( 194.000)
         400.000
                             2.336
                                         18.673
                                                                                3019-48
! * NOTE: PRESSURE + MOMENTUM BALANCE OCCURS 144.52 FEET FROM NODE 11.00;
  NODE 11.00 : HGL = < 216.715>; EGL= < 222.24D>; FLOWLINE= < 210.960>
                                                                                                            *******************************
                                                                                                                                              2.00 TO NODE 2.00 IS CODE = 5 ELEVATION = 194.00 (FLOW IS UNDER PRESSURE)
                                                                                                              FLOW PROCESS FROM WODE
UPSTREAM NODE 2.00
FLOW PROCESS FROM MODE 11.00 TO MODE 11.00 IS CODE = 2
CPSTREAM MODE: 11.00 ELEVATION = 210.96 FFLOW IS UMPER PRESSURE)
                                                                                                              CALCULATE JUNCTION LOSSES:
                                                                                                                                             DIAMETER
                                                                                                                                 FLOW
  CALCULATE NAMEOLE LOSSES (LACFCE: : PIPE FLOW = 75.00 CFS
  PIDE FLOW = 75.00 CFS PIPE DIAMETER = 27.00 INCHES
FLOW VELOCITY = 18.86 FEET/SEC. VELOCITY HEAD: 5.525 FEET
HEYE = .055 (VELOCITY HEAD) = .055: 5.525) = .276
                                                                                                                                  (CFS)
                                                                                                                                              (INCHES) (DEGREES)
                                                                                                                                                               .00
                                                                                                                  претреди
                                                                                                                DOWNSTREAM
LATERAL $1
LATERAL #2
  NODE 11.00 : BGL = < 216.439); EGL= < 221.964>; FLOWLINE= < 210.720)
                                                                                                                                    5.00
                                                                                                                                                                               .86
                                                                                                                                     .00===05 EDUALS BASIN INPUT===
                                                                                                              LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(02*V2*Q1*V1*COS(DELTA1)-Q1*V1*COS(DELTA1)-
Q4*V4*COS(DELTA4))/({a1+a2(*16.1)
NANNING'S N: UPSTREAN * .01200;
  FLOW PROCESS FROM MODE 11.00 TO HODE 10.00 IS CODE = :
UPSTREAM NOOE 11.00 ELEVATION = 210.72 IFLOW IS UMBER PRESSURE)
CALCULATE FRICTION LOSSESHEACECD:.
                                                                                                              HARMING'S N: OPSTREAM = .01200;

JUNCTION LEMOTH = 9.00 FEET FRICTION LOSS = ...
EMTRANCE LOSSES = .000 FEET
JUNCTION LOSSES = [DY+NVI-NV2]+IFRICTION LCSS)+(ENTRANCE LOSSES;
JUNCTION LOSSES = (1.223)+f .225)+( .000) = 1.448
                                                                                                                                                                     DOWNSTREAM :
                                                                                                                                                                     DOWNSTREAM = .01200
FRICTION LOSS = .22495 FEET
                                                 PIPE DIAMETER = 17.00 INCHES
  PIPE FLOW
                   75.00 CFS
48.00 FEET
 PIPE FLOW = 75.00 CFS PIPE DIAMETER = 27.00 INCHES PIPE LEMGTH = 43.00 FEFT MANNING'S N - .01200 SF10/Kir*3 = 1: 75.001/1 335.51211**2 = .04997 RF-L*SY ' 33.001*(.04997) = 2.399
                                                                                                                         2.00 : HGL = ( 198,988); EGL= ( 202,511); FLOWLINE= : 193,500)
                                                                                                              NCDE
                                                                                                            FLOW PROCESS FROM NODE 2.00 TO NODE 1.00 IS CODE = 3
UPSTREAM NODE 2.00 ELEVATION = 193.50 (FLOW 15 UNDER PRESSURE)
  FLOW PROCESS FROM MODE 10.00 TO MODE 10.00 IS COPE = 1
UPSTREAM MODE 10.00 ELEVATION = 207.84 (FLOW IS UMBER PRESSURE)
 CALCULATE PIFE-BEND LOSSES (OCEMA) :
                                                                                                                                                             PIPE DIAMETES =
                                                                                                                                 125.00 CFS
                                                                                                               PIPE FLOW = 125.00 CFS
CENTRAL ANGLE = 61.000 DEGREES
PIPE LENGTH * 80.00 FEET
FLOW VELOCITY = 25.07 FEET/SEC.
                                                                                                              MANNING'S N =
                                                                                                                                                                                .01200
                              10.00 TO NODE 9.00 IS CODE = 1
ELEVATION = 207.84 (FLOW IS UNDER PRESSURE)
                  10.00
                                                                                                              NODE 1.00 : HGL = < 196.700); EGL= < 200.225; FLOWLINE < 190.000)
                                                                                                            CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 75.00 CFS
PIPE LENGTH = 96.00 FEET
                    75.00 CFS PIPE DIAMETER = 27.00 INCHES 96.00 FECT MANNING'S N = .01200 ( 75.00)/( 335.512))**2 ± .04997 96.00)*( .04997) = 4.797
                                                                                                              OWNSTREAM PIPE FLOW CONTROL DATA:

NODE MUMBER = 1.00
PIPE FLOW = 125.00 CFS PIPE DIAMETER = 39.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 196.700
                                                                                                                                                          END OF GRADUALLY VARIED FLOW ANALYSIS
            9.00 : HGL = ( 209.111); EGL= ( 214.636); FLOWLINE= : 203.060)
```