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Abstract: The stochastic integral equation method (S.LE.M.) is used to evaluale the telative performance
of a set of both calibrated and uncalibrated rainfall-runoff models with respect to prediction errors. The
S.1E.M. is also used to estimate confidence (prediction) interval values of a runoff criterion variable, given
a prescribed rainfall-mnoff model, and a similarity measure used 0 condition the storms that are utlized
for model calibration purposes.

Because of the increasing attention given to the issue of uncertainty in rainfall-runoff modeling esti-
mares, the 5.LE.M. provides a promising tcol for the hydrologist 10 consider in both research and design.
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1 TIntroduction

A recent development in the analysis of rainfall-runoff modeling uncerainty is the use of
stochastic integral equations o represent the total error in runoff estimates. The
mathematical details of the stochastic integral equation method (S.LE.M.) are contained
in Hromadka and Whitley (1988). In that paper, 2 mathematical derivation of the well-
known design storm approach to estimating T-year values of a runoff criterion variable
(e.g., peak flow rate, pipe size, retention basin peak volume demand, etc.) is presented,
with special emphasis on a computational example problem which provides both a test of
the design storm approach, and also a feasible problem which has an analytic solution.
The S.I.E.M. is based upon the theory of stochastic integral equations such has been suc-
cessfully applied in the field of life science (e.g. Tsokos and Padgett 1974), which pro-
vide the mathematical underpinnings of the stochastic integral equation approach, its
validity, and application.

In this paper, the S.LE.M. is applicd towards evaluating the performance, with respect
to prediction error, of a set of rainfall-runoff models in the estimation of a specific cri-
terion variable value for a hypothetical (e.g. future, or design} storm event. The criterion
variable considered herein is the peak flow rate anticipated at a specified location, result-
ing from a hypothetical rainfall event assumed to be measured at a given rain gauge(s).

Nine rainfall-runoff model structures are considered. Both calibrated and uncalibrated
versions of each of the model structures are evaluated, resulting in the consideration of a
total of 18 rainfall-runoff models,

The S.LEM. is applied towards approximating confidence (prediction) interval esti-
mates of the prescribed criterion variable value. The S.LE.M. is also applied towards
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evaluating the relative performance of the considered rainfall-ronoff models with respect
to prediction errors, given a . set of rainfallrunoff data, The use of the S.LEM. w0
represent the model error is somewhat analogous to regression analysis techniques,
except that the 5.LEM. provides for a distribution of runoff hydrographs 1o be subse-
quently used in estimating a distribution of values of the prescribed criterion variable,
rather than directly regressing the criterion variable values.

2 Problem setting

For storm event 3, rainfall and runoff information ar an arbitrary point p in the catch-
ment, at time #, are given by the realizations P{rp;0) and Q{t p;w), respectively. The
typical problem setting is to have rainfall data obtained at a single point, p,, (i.¢. the rain
gauge), and runoff data obtained at the single point, p, (i.e. the stream guage). We will
focus upon the problem of using a rainfall-runoff model, M to predict the runoff response
at the streamn guage, given a hypothetical storm even (ie. the rainfall assumed to be
applied at point p,, including prior rainfall considered of importance). In order to sim-

plify the analysis, it is assumed that the storm events are of relatively short time duration
(i.e. durations of less than a few days, including the associated antecedeni rainfall), and
that the catchment is relatively "free draining” in that significant detention or retention
effects are minor. Such catchments frequently occur in urbanized areas where storm
channel systems are in place that provide for peak flow rate floed protection, without the
nse of dams or fleed control basins.

We will utilize the available record of rainfall-runoff data to develop estimates of the
distributions of the several stochastic processes involved. These distributions may then
be used to estimate confidence intervals on prescribed runoff criterion variables (e.g.
peak flow rate, peak 1-hour mean flow rate, peak flow velocity, pipe size, etc.), based
upon the available rainfall-runoff data and the model’s performance record in approxi-
wmating the catchment’s runoff response at the stream gauge,

2.1 Stochastic integral equation method (5.1.E.M.)
The rainfalf-runoff model, M, operates upon the rainfall realization obtained a1 point p,.,
P {p,;0), 1o produce the model estimate (approximation realization of runoff an point p).

M:P{p,i0) = M(pio) 1
The total approxiwmation error, £(¢,p5(0) at thne ¢ 15
E@pio=Q(t.p;w)-M(.psa). (2}

Here, Q (¢ ,p;w) is the true renoff hydrograph. For each storm event, o, there are the asso-
ciared realizations {FP(* p,:w), M(.p;w), Q( p:w)}.

It is assumed that the model will produce identical model output realizations given
identical rainfall input realizations. However, the rainfall-runoff model may be such that
several different rainfall events result in identical mode!l output Tealizations. We define
equivalence classes of such model output realizations by <M(-,p;o;)> where, for all

storm events defined o begin at storm time =0,
<M (.p0,)>={M (".p;w):M (@ p;w)=M(tp,w)} (3)
In Eq. (3), <M(-p;0)> is seen to be the set of all model output reatizations tha: are

identical to the mode! cutput realization for storm event oy,

The total approximation error is now written as a stochastic integral equation (Tsokos
and Padgett 1974; Hromadka and Witley 1988) by
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4
E(tp:o)= [ M(~s.p:0)h (s pro)ds @
=}

The term A(:p;0) is seen 10 be a transfer fanction, to be convoluted with the model out-
put, M(-p;). (In this paper, a least squares technique is used to evaluated the transfer
functions.) Because of the many random variabilities in the storm event, the several
hydrologic and hydraulic processes, and other factors, identical model output realizations
in <M(-p;m;)> will generally have associated stream gauge measured runoff realizations

which are different. Consequently, for each pair of realizations {M (-,p;mj), M(pa.)} in
<M(p;w;)>, there is and associated pair of realizations of approximation error,
fEC.piwy), E(.piwy)}, and these realizations of approximation error will generally differ.
Therefore, for each equivalence class of model output, <M(.p;w,;)>, there is an associ-
ated distribution of realizations of h(.p;®), noted as [A (-p;m)rM%], where M, is short-
hand notation for M (",p;m,-), developable from use of Eqs. (3) and (4). If there are N
events in an equivalence class of model outpuit, <M {-,p;w;)>, then it is possible to deter-
mine N realizations of k(-p ;) for this equivalence class by solving Eqgs, (2) and ¢4).
Should the rainfall-runoff model be used to predict runoff at the stream gauge, resul-
ing from a hypothetical storm event, Wp, defined by the hypothetical rainfall event,

P(-p,i0p), the mode produces the single realization,
M.P(ppitop) - M(piap). ®

We now identify the equivalence class of model output, <M (£;0p )>, In order 10 obtain
the associated distribution of realizations, {h(.p;w) IM%]. The S.1LE.M. results in a distri-
bution of runoff hydrograph outcomes at the stream gauge, [Q (1p;5)], for hypothetical
storm event wp, by

i
[0€.p30p)1=Mt.030p )+ [ M(s=s 360 (5 3600 1M g s, ©
5=t

If there are N events in <M(-,p;0p)>, then it is possible to determine N estimates of the
runoff hydrograph for event wp by computing Eq. (6) for each h(p;wp) associated with
<M(,p;tp)>. Let A be the criterion variable of interest (e.g., peak flow rate, pipe size,
eic.). Then for the hypothetical storm event, @p, the value of A is determined to be a ran-
dom variable distributed as

[Alwp)}=ALQ(.p;0p)). M

Here, A is used as notation for operating upon each outcome of the random process,
[Q(.p;0p)], in turn, in order to obtain samples of the criterion variable value. Again, if
there are ¥ events in <M(p;0p)>, it is possible to determine N estimates of the cr-
terion variable, for use in developing a frequency distribution. From [A {mp)], confidence
(prediction) intervals can be approximated, and these confidence integral estimates
depend upon the rainfall-runoff model used.

It is noted that in the above development, the nse of equivalence classes necessarily
results in the S.LEM. formulation of Eq. (4) being equivalent to the use of Eq. (2)
directly. That is, the error determined from Eq. (2) is equivalent to the error from Eq. &)
when one is estimating the error for some future event that produces a model output that
fits into an equivalence class. Of key importance, however, is estimating the error for a
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model output that doesn’t fit into an equivalence class. in the next section, the use of
equivalence classes is telaxed in order to obtain a more workable extension of the
S.LE.M.

3 Approximation of criterion variable confidence intervals

In practice, we only have a small sample of the total ensemble of realizations associated
to the various stochastic processes involved. Consequently, precise definition of
equivalence classes, as used in the previons development, is impossible, In oreder to
develop meaningful statistics, we need to assemble a reasonable sampling of the realiza-
tions. One approach is to use a similarity measure of closeness for comparing realiza-
tions of M(-p,). That is, we will group together model output realizations which are
"similar” to each other, rather than being identical. The use of equivalence classes and 2
similarity measure is analogous to the procedures used in Troutman (1985) to condition
the independent variable in regression analysis. A recent use of conditioning for channel
flood routing modeling is given in Becker and Kundzewicz (1987), Although one simi-
larity measure is used in the applicarions considered in a later section of this paper, an
overall "best” similarity measure is not proposed herein. Rather, given a prescribed simi-
larity measure, the S.1LE.M. can be used to represent the model error.

Let H(MU,‘M(.,}.) be notation for the measure of similarity between two model output

realizations of runoff for storm events @; and © ;. For example, the measure of similarity
may be based upon a set of characteristic runoff values such as { peak 1-hour mean value
of flowrate, peak 2-hour mean value of flowrate }. Then WMy My, )<e indicates that
M(.p;;) and M(p;w) are considered to be within & similarity according to the
prescribed similarity measure used. Now let <M (-p;0,).i,e>={M (-p;0)n(M, M) <e).
That is, <M(piw;) L E> is the set of all model outpot realization which are e-simmilar to
outcome M{-p;ay). Then as before, for the selected similarity measure p, tolerance €,
and model Af, given <M(-p;m;)l.e> there is an associated distribution
(o) 1M, 0], And in prediction, the runoff estimate for hypothetical storm event
@p is approximately distributely as

T
QG piwp M pieph | M-s.pip HA(s piw) 1M, 0 E1ds. (8)
»={}
And analogous to Eq. (7), confidence intervals for criterion variable values, for hypothet-
ical stonm even tyy,, are approximated by use of Bq, (8).

For a given record of rainfall-runoff data, the estimates of the distribution [Q(-p;p)]
depend on the selected model, M; the selected similarity measure, L and the selected
tolerance, &, used to develop the similarity classes of model output, <M (-p;a;),lLe>.
And the estimates of the distribution of the runoff criterion variable also depend on the
above selections. And of course, any estimate of the various distributions invoived are
subject to the usual errors due to statistical sampling, Because of the dependence of esti-
mates of [Q(-p;wp)] on M, 1, and €, one may consider the notation,

tQC.p;0p)I=[Q - pi00p ) IM Jue]. 9)

And from the above discussion, it is seen that oar estimate of the discibution of runoff
criterion variable A is given for even wp by
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[Alwp)]=[A{wp)IM |Le] (10)
where
(Alop) MW E=A[O( p;wp)IM el {an

The use of a similarity measure to partition the probability space of model output into
classes is analogous to conditioning. In effect, one is claiming that the rainfali-runoff
maodeling error depends upon the modeling predictions. Perhaps the rainfall-runoff model
is though to be more accurate when large runoff events are being handled, than when
small runoff events are being studied. Or one may suppose that the modeling error is
linear with respect to the model prediction of runoff, and define  single storm class to
accommadate all model estimates. One may elect to utilize other approaches to pariition
the probability space of model output; for example, Hromadka and Whitley (1988) con-
sider storm classes of measured storm rainfalls and assumed basin-averaged effective
rainfall for formulating storm classes. The need for similarity measures becomes espe-
cially important in situations involving soil-moisture accounting; that is, a simple unit
hydrograph model with a fixed phi-index loss function can become an improved estima-
tor of runoff should the phi-index be conditioned based vpon prior rainfall conditions,
i.e., by use of storm classes of model input.

4 Rainfall-runoff models, and the variance in the criterion variable estirnates

‘There exists a wide range of rainfall-runoff models in use today. Each model applied to a
record of rainfali-runoff data will typically resnlt in different estimates of confidence
intervals for the specified runoff criterion variable. The S..E.M. provides a means for
evaluating the performance of the selected rainfall-runoff model. Adding complexity to
the rainfall-runoff model (such as subdividing the catchment into smaller subareas, or
adding another component to the hydrologic mass balance algorithms) may or may not
account for the unexplained phenomena that coniribute to the variance in the model run-
off predictions. The application of the S.LE.M. to evaluating rainfall-runoff model per-
formance, with respect to prediction error, is demonstrated in the foliowing example
computational problem,

Example problem

The use of the S.1.E.M. to evaluate rainfall-runoff model performance, with respect 1o
prediction error, will be demonstrated using a set of data for a fully urbanized catchment
located in Los Angelos, California. The caichment has a fully developed storm channel
system that was designed to protect for peak flood flows associated to severe stomm
events, {i.e., a 50-year design storm event), and any hydraulic effects due to backwater
may be assumed negligible. The caichment is subject to coastal rainfall events, with
most storms of flood control interest being of durations less than 24-hours. Three rain
gauges are available within the approximately 15 square-mile catchment area, resulting in
the rainfall data being assumed applicable to nearly equal area sizes of the catchment.
Because the rainfall used for model input depends on the location where the runoff is
being studied, (due to a linear weighting of more than one rain gange), we write the
assumed mainfall as P(-p;m). A stream gauge, (point p), is located in one of the large
concrete channels. '

A review of 25-years of rainfall-runoff data indicated that only 15 storm events were
of interest for flood control purposes. These storms were assumed to be elements of the
same model output similarity class (i.e., siorm class). That is, the similarity measure
vsed in this example is simply to partition all storm events into two similarity classes;
namely, significant and insignificant storm events. Obviously, a myriad of other similar-
ity measares are possible, and the resulting S1.E.M. distributions reflect both the
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similarity measure and the rainfall-runoff model being used. We will consider the use of
several rainfall-runoff modeis.
The first rainfall-runoff model considered, M), is a single area unit hydrograph model

with effective rainfall estimated by
Fi(p50)=p,P(t,p;00) (12

where F (-, p;w) is the area-averaged effective rainfall assumed for the entire catchment
tributary to the stream gauge, for storm event ©, and y, is a constant fraction coefficient,
The model estimates of runoff are given by

I
M(t.p;w)= I Fi(r-5.p;0py, (s)ds {13)
s=0

where (s is the unit hydrograph. The values for y; and y,(s) used in Eq. (13) were
determined by use of a local flood control agency design criteria. Thus, we are in
essence able 1o test the rainfall-runoff model against actual data. (Normally, the availa-
bility of runoff data affords the opportunity to "calibrate” the model by selecting values
of y, and y{s) which improve the model’s performance, At ungauged catchments we
don’t have such runoff data; therefore, one is unable to calibrate the model.) Our
analysis provides an indication as to how the model may perform at an ungauged caich-
ment.

Using the above 15 storm events, 15 realizations of E 1(-p;0) are obtained for the con-
sidered storm class using Eq. (2). Becavse the model M is a linear operator on the ele-
ments of the storm ¢lass, one can use either the model output realizations, M, (-,p;m), or
the effective rainfall realizations F,(-,p;w), in relating to the approximation error realiza-
tions, Ey(-,p;w), with equivalent results. That is, for each storm event, , in our storm
class,

i
Ey(t.p;o0= | My(r-s.p:odhy (s p:o)ds,  or (14)
=]
I
E\(t.p300= | Fir-s prajgfs gro)ds (15)
: =0

and from Eq. (13), the transfer functions g,(s,p;w} and h,{s,p;m) are but linear gansfor-

mations of each other (i.e., a convolution), for all elements in the storm class.
Equation (15) was used in this model analysis, resulting in 15 realizaitons of g10.p;m).

A hypothetical storm event, tp, was defined by simply averaging together the 15 rainfali
paiterns,

; 1 18 .

Plpip)=— T PE.pi0)) (16)
15 =

where each P(r,p;mj) is translated to begin at model time zero. Using wp, the model M,

and the S.LE.M. result in the sampling of 15 runoff hydrograph realizations shown in
Fig. 1. From the figure, the frequency-distribution of a selected criterion variable can be
developed by operating on each sampled realization of runoff. An estimate of the
frequency-distribution of [A(wp)] resulting from use of M, can be readily developed
from the figure, where A is the criterion variable of peak flow rate. For model M, the

expected peak flow rate is 3730 cfs, with a standard deviation of 480 cfs.
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Figure 1. Distribution of Runoff Hydrographs, nsing model M;, for hypothetical event oy

Figure 2. Distribution of Runoff Hydrographs, using model M, for hypothetoical event 6y,

An examination of Fig. 1 indicates that the inclusion of an initiai abstraction com-
ponent, /a, may be useful. Rainfall-runoff model, M,, will be based upon the M 1 model
and parameters, but with an added /a component defined as the initial 0.10-inches of
rainfall. Thus, the effective rainfall is estimated in M, by

Iy
0; for I P{s.p,w0)ds<0.10
s s=0
Lpw=| _ . 1
2P30) ¥ P(tp;0); otherwise an
Using M,, another set of 15 realizations of M,(-,p;w) are developed. When the S.LE.M.
i3 applied to the hypothetical storm event, P(-,p ip), the estimate of runoff is another set

of 15 possible outcomes, shown in Fig. 2. For the criterion variable of peak flow rate, the
expected peak flow rate is 3685 cfs, with a standard deviation of 460 cfs.
A third rainfall-runoff model, M;, is based upon the unit ‘hydrograph employed in

models M, and M, but uses the effective rainfall estimate of

P @ p:w)-f(t,p);, when positive
Fy(t.p0)= 0 ; otherwise (18)
where f(¢,p) is an exponential loss rate defined by
FapYLoHf ot e (19)

In M, parameters f,, f.., k are defined by £,=0.8 inch/hour, f,=0.3 inch/hour, and & is
defined such that f(r,p) is within 5-percent of £, at storm of 25-minutes. These parame-
ter values are based upon the same local flood control ageney criteria used for developing
the synthetic y,{s) .

" Upon application of model M3 1o the rainfall-ranoff data, another set of total error real-
tzations, E3(-,p;®), is developed. For the hypothetical storm event, @p, and the criterion
variable of peak flow rate, the expected peak flow rate is 4,205 cfs with a standard devia-

tion of 520 cfs.
Rainfall-runoff models, My, Ms, and M, are each defined to be a three-subarea unit
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hydrograph model, where subareas are selected to approximately conform to the catch-
ment area wherein each rain gauge is assumed to apply. A unit hydrograph is estimated
for each subarea by the same local flood control agency design criteria used in the previ-
ons models. The selected effective rainfall estimators for My, Ms, and My, conform to an

application of the loss functions used in the previous models M, M,, M, respectively.
The resulting expected peak flow rates, m,, and standard deviations, o, for model M,
arc as follows: M,: my=3855 cfs, 6,=480 cfs; Ms5: ms=3710 cfs, 05=490 cfs;
Mg mg=4260 cfs, 6=540 cfs.

Rainfall-runoff models M;, My, and Mg, are based upon a highly subdivided version of
models My, Ms, and M¢. A total of 68 subareas are used (each approximately 140 acres
in size) in each of the three models. The drainage system is modeled as a combination of
pipeflow and open channel flow hydraulic links, using a kinematic wave routing tech-
nigue. The only difference between models M, Mg, and My, are the subarea effective
rainfalls, which conform 1o the estirnators used in models M, M,, and M, respectively.
Subarea unit hydrographs are estimated using the previously mentioned criteria. The

results in predicting the runoff criterion variable of peak flow rate, at the stream gauge
location, for the hypothetical storm oy, are as follows:

My m=3910cfs, o=450cfs; My me=3820cfs, og=46(cfs,
Mg : my=4455¢cfs, 0g=530cfs.

Table 1 surnmarizes the several rainfail-runoff model estimates for this example problem.
It is seen that the expected peak flow rate estimates range from 3685 cfs to 4455 cfs, and
the standard deviations range from 450 cfs to 540 cfs. It is also seen that, for this prob-
lem, use of the practice of subdivision into subareas and channel routing tends to effect
peak flow rate estimates in a consistent manner, resulting in higher estimates, of the
expected peak flow rate.

5 Rainfall-runoff modet calibration

Each of the above rainfall-runoff models can be calibrated. Because of the data availabil-
ity, the loss function parameters can be uniformly modified. Additionally, runoff timing
effects of a model can be adjusted by uniformly modifying all channel routing link
hydraulic parameters (i.e., Manning’s friction-factors ), or modifying the single area unit
hydrograph model lag times. Such a calibration effort was performed for each of the nine
rainfall-runoff models by nsing the following objective: choose model parameters, by
triai-and-error, as to minimize the difference between the model estimates and the meas-
ured data for the peak 30-minuntes of runoff, for each storm event. Obviously, other
objective functions could be used. The above objective was selected as a simple test for
achieving reasonable estimates of peak flood flow characteristics which would be impor-
tant to the flood control system being studied.

The calibrated models are then again applied o estimating the peak flow rate for the
hypothetical storm event, . The results are itemized in Table 2. Table 2 indicates a

range in expected peak flow rates, using the calibrated rainfall-runoff models, of 3895 cfs
- 4500 cfs, with a range in standard deviations of 410 cfs - 530 cfs.

6 Confidence (prediction) interval estiinates

The results contained in Tables 1 and 2 can be directly used to obtain one-sided confi-
dence {prediction) interval estimates for the runoff criterion variable of peak flow rate.
Table 3 provides the final tabulation for our example problem. In Table 3, normality is
assumed for convenience only. The computational results used to develop Tables 1 and
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Table 1. Peak flow rate estimates for example problem (without calibration of modcls}

Model Loss Number of Number of Number of Expected
Number Function Subareas Routing Peak Flow Deviation
Elements Links Rate (cfs) (cfs)
1 ¥P (g 1 - 3730 430
2 P piayia 1 - 3685 460
3 For(fafo)e™ 1 - 4205 520
4 see #l - 3 - 3855 480
3 see #2 3 5 3710 490
6 see #3 3 5 4260 340
7 sce #1 68 27 3910 450
& see #2 68 27 3820 460
9 sec #3 68 27 4455 530

Table 2. Peak flow raie estimates for example problem (with calibration of models)

Model Loss Number of Number of Number of Expected
Number Function Subarcas Routing Peak Flow Deviation
Elements Links Rate {cfs) {cls}
I ¥P(piw) 1 - 3895 430
2 yP(-piw)ia 1 - 3910 4ip
3 For{fafoe™ I - 4400 450
4 see #1 3 - 3960 475
5 sec #2 3 5 39350 430
& sec #3 3 5 4450 510
7 see #1 68 27 3960 454
8 see #2 &8 27 3900 460
£ soe #3 68 27 4500 530

2, can be used to prepare a frequency-histogram of the runoff criterion variable values,
and estimates of confidence intervals obtained directly from the computed data. In the
considered example problem, the one and two-standard deviation estimates from the his-
togram were found to be within a few percent of the corresponding values given in Table
3

Table 3 summarizes the demonstrated performance of nine different rainfall-runoff
models for the two case studies of (i) where a standardized {or regionalized) rainfall-
runoff model is used at an ungauged catchment; and (ii) where the model is calibrated to
local runoff data when such data are avaitable, Obviously, there are a wide spectrum of
rainfall-runoff modeling approaches that are not considered in the table, but any of these
other models can be included in our comparison by use of the above S.LE.M. pro-
cedures.

7 Conclusions

The stochastic integral equation method (S.1LE.M.) is used to evaluate the relative perfor-
mance, with respect to prediction error, of a set of both calibrated and uncalibrated
rainfall-runoff models. The S.ILEM. is also used fo estimate confidence (prediction)
interval values of a runoff criterion variable, given a prescribed rainfall-runoff model.
Although only the peak flow rate is considered in this paper, the extension of the various
concepts and procedures to other criterion variables follows directly,

Several topics need to be addressed in future research. Among them include, and
examination of similarity measures, an examination of probability distributions used to
estimate confidence intervals, regionalization of transfer function realizations for use at
ungauged locations, and several other topics.
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Tabk 3. One-sided confidence {prediction) interval estimates for peak flow (example problem)

Modal m+a m+20

Nutnber Calibrated (50%) (84%) (58%)
| no 0 { mﬁ 4210 3_-655
2 no 3085 {460) 4145
3 no 4203 {320y 4725 5245
4 no 3855 {480) 43335 4815
5 no 3710 (490} 4200 4690
6 o 4260 (540) 4800 5340
7 no 3910 4303 4360 4810
8 ne 3820 {460) 4280 4740
9 1o 4455 (530) 4985 5515
i yes 3895 {450) 4345 4795
2 yes 3910 (410} 4320 £730
3 yes 4400 (490) 4890 5380
4 yes 3960 (475} 4435 4910
5 yes 3950 (430) 4380 4310
6 yes 4450 (510} 4960 5470
7 yes 3960 (450) 4410 5064
8 yes 3900 (460} 436/ 4820
9 yes 4500 (330) 5030 3560

Notes: 1. m=expected peak flow rate, 2. {50%:) = 50-percent confidence {predicrion) inlerval
3. (o)= standard deviation of peak flow rate distribution
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