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ABSTRACT Flooding and inundation of large areas can be effec-
tively modeled using the two-dimensional diffusion hydredynamic
model (DHM). The model described here uses the two-dimensional
form of the diffusion equations for flow over a plane to
represent flow spreading over ground surfaces. The model also
deals with channel flows and flows through constrictions (such
as bridges or culverts) by means of the one-dimensional dif-
fusion equations. Flow from the one-dimensional channel onto
the two-dimensional surface, and return flow from the surface
into the channel is handled by a simple interface model which
preserves continuity of the flow volumes while forcing an iden-
tical water surface at flooding locations between the two-
dimensional and one-dimensional models.

An example of the application of the DHM to a flood problem is
given to f{llustrate the ability of the model to accurately
define fiooding 1imits in areas where the flow spreads laterally
from the river channel, Use of the DHM in general flood control
studies is proposed because of the advantages offered by the DHM
approach over other commonly used flooding analysis computer
models. The DHM is avatlable from the U.S. Geological Survey as
non-proprietary computer program.

1. Introduction

Most hydraulic and hydrologic models which are used for analysis of
flood effects deal only with peak flows (steady flow models) or use a one-
dimensional approach which ignores the lateral spread of water over areas
away from the main stream channel. Other drawbacks in the currently
available analysis techniques are the inability of most current models
to represent unsteady backwater effects in channels and for overland flow,
unsteady overflow of channel systems due to constrictions (e.g., culverts,
bridges, etc.), unsteady flow of floodwater across watershed boundaries
due to two-dimensional (horizontal plane) backwater, and ponding effects.

The current version of the DHM has been successfully applied to a
collection of one- and two-dimensional unsteady flow hydraulics problems
including dam-break analyses and flood system deficiency studies.
Consequently, the DHM promises to provide highly useful, accurate, and
simple-to-use computer model which is of immediate help to practicing
flood control engineers. The one drawback to the model 4s that con-
siderable topographic data may be needed, depending on the area being
modeled.



2. Background

One approach to studying flood wave propagation is simply to esti-
mate the maximum expected flow rate and route this flow as a steady-state
flow through the downstream reaches. This method is excessively conser-
vative in that alt effects due to time variations in channel storage and
routing are neglected.

A better approach is to rely on one-dimensional (1-D} full dynamic
unsteady flow equations (St. Venant €gs.). Some sophisticated 1-D models
include terms and parameters to account for complexities in prototype
reaches which the basic flow equations cannot adequately handle. The
DWOPER Model by Fread [1] incorporates a number of features which allow a
1-0 model to be successfully used in many river flooding applications.
However, the 1imits of 1-D models can only be overcome by extending the
analysis into the two-dimensional (2-D) realm. Several 2-D models
employing full dynamic equations have been developed. Among them is one
by Katopodes and Strelkoff [2] particularly aimed at flood flow analysis.
Attendant with the increased power and capability of 2-D fully dynamic
models, are the greatly increased boundary, 1initial, geometry and other
input data requirements, as well as the need for large amounts of computer
memory and computational speed, and 1increased computational time.
Although it is often claimed that the extra computational cost and effort
required for a more sophisticated model is negligible compared with the
total modeling cost and effort in the i-D realm, this is not yet the case
in the 2-D realim.

The coupled 1-D and 2-D diffusion hydrodynamic model (DHM} de-
scribed in this paper offers a simple and economic means for the estima-
tion of flooding effects for diverging flood flows.

3. One-Dimenstonal Model for Unsteady Flow

Generally, the 1-D flow approach is used wherever there is no sig-
nificant lateral varfiation in the flow. Land £3,4] examined four such
unsteady flow models for prediction of flooding levels and flood wave
travel time, and compared the results against observed unsteady flow data.
Ponce and Tsivoglou® examined the gradual failure of an earth embankment
(caused by an overtopping flooding event) and present a detailed model of
the total system: sediment transport, unsteady channel hydraulics, and
earth embankment failure. Although many dam-break studies involve flood
flow regimes which are truly two-dimensional (in the horizontal plane),
the 2-D case has not received much attention. In addition to the model of
Katopodes and Strelkoff, which relies on the compiete 2-D dynamic
equations, Xanthopoulos and Koutitas [5] use the diffusion model to
approximate a 2-D flow field. The model assumes that the flood plain flow
regime is such that the inertia terms are negligibie. In a 1-D model, -
Akan and Yen [6] also use the diffusion approach to model hydrograph
confluences at channel junctions. In the tatter study, comparisons of
mode! results were made between the diffusion model, a complete dynamic
wave model solving the total equation system, and the basic kinematic wave
equation model. The comparisons between the diffusion model and the dyna-
mic wave model were good for the study cases, only minor discrepancies
extsted.

4. Mathematical Development for Two-Dimensional Model

The two-dimensional diffusion hydrodynamic model (DHM} 1s based on
a diffusion scheme in which gravity, friction, and pressure forces are
assumed to dominate the flow equations. Xanthopolous and Koutitas [5] em-



ployed such an approach in the prediction of dam-break flood plains in
Greece. Good results were also obtained in their studies when they
applied the 2-D model to flows that were essentially 1-D in nature.

In the following sequence of equations, which follows the develop-
ment of Hromadka and Yen [7,8], an integrated finite difference model is
developed which solves (1) the two-dimensional flood wave propagation over
surfaces, (2) the one-dimensional flood wave for channel flow, and (3) the
interface between the two models to accomodate flooding effects. The set
of fully dynamic 2-D unsteady flow equations consists of the following:

an equation of continuity
aqx 9q oH

and two equations of motion
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in which gy and qy are flow rates per unit width in the x and y-direc-
tions; Sgx and Sgy represent friction stopes in x and y; H, h, g stand
for, respectively, water-surface elevation, flow depth, and gravitational
acceleration; and x,y,t are spatial and temporal coordinates.

The above equation set is based on assumptions of constant fluid
density with no sources or sinks in the fiow field, hydrostatic pressure
distributions, and relatively uniform bottom slopes.

The local and convective acceleration terms can be grouped together
and rewritten as
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where my represents the sum of the first three terms in Egs. (2) and (3)
divided by gh. Assuming the friction slope to be approximated by steady
flow conditions, Manning's formula can be used to estimate q;
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Equation 5 can be rewritten as
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The symbol s indicates the flow direction which makes an angle 8 = tam"1

(qy/qx) with the +x-direction.
VYalues of m are assumed to be negligible, resulting in the simple
diffusion model:

aH
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The 2-0 flood flow model 1s formulated by substituting Eq. (8) into
Eq. (1) to give
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6. Numerical Model Formulation (Grid Elements)

For uniform grid elements, the numerical modeling approach used is
the integrated finite difference version of the nodal domain integration
(NDI} method. For grid elements, the NDI nodal equation is based on the
usual nodal system (see Fig. 1). Flow rates along the boundary I' are
estimated using a linear trial function between nodal points.

For a square grid of width, §,
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In Eq. {11}, h and n are both averages of the values at ¢ and E, i.e.
h = (h+ hE)IZ and n = (ne + ng)/2. Additionally, the denominator of Ky
is checked, and Ky is set to zero if |Hg - Hc | is less than a tolerance
such as 1673 m.

The model advances in time by an explicit approach

i+ o gt . (12)

where the assumed input flood flows are added to the specified input nodes
at each time step., After each time step, the conduction parameters of Eq.
(11) are reevaluated, and the solution of Eq. (12) reinitiated. Using
grid sizes with uniform lengths of about 1000 m, time steps of about 4 sec
gave satisfactory results.

7. One-Dimensional Model
The one-dimensional formulation is developed by eliminating a
directiona) component In Eq. {8). This model provides a good approximation



of one-dimensional unsteady flow routing including backwater effects and
subcriticai/supercritical flow regimes. A study by Hromadka et al. [9]
indicated that good results can be obtained from a one-dimensionai version
of DHM for modeling unsteady fiow effects.

8. Interface Model (Flooding Source/Sink Term)

To modei flood flows leaving and returning to a one-dimensionai
channel, an interface model is needed to couple the 1-D (channel) DHM
and 2-D (topography) DHM. Figure 2 1illustrates the mass conservation
scheme used to represent the source/sink term of flows flooding or drain-
ing the topographic model to the channel model.

9. Channel Structures

A major problem in flood plain modeling is the existence of chan-
nel obstructions and constrictions such as bridges, culverts, etc. These
features are effectively modeled 1in the DHM by specifying a stage-
discharge relationship at these points within the channel system or at an
appropriate point on the flood plain topography.

10. Application of DHM to a Flood Plain Problem

The DHM was used to make a detailed study of flooding during a
100-yr flood event on the Santa Ana River in Orange County, California, in
the city of Garden Grove. The schmatic of the finite elements used is
shown in Fig. 3. The local terrain slopes southwesterly at a mild gra-
dient. The area is fully developed with mixed residential and commercial
structures. The Garden Grove Freeway forms a barrier on the southerly
side of the area, with the exception of an outlet at an undercrossing at
Garden Grove Boulevard. The flood flows leaving the Santa Ana River are
iarge and can spread easiiy in a lateral direction; thus the analysis
must include the effects of both unsteady fiow and two-dimensional flow.

The detailed model 1is based on topographic data from an aerial
survey. In the model, effective areas are used which represent that area
where rapid water volume changes occur. Additionally, effective flowpaths
are used which represent the length of each grid boundary where flows can
cross. In all cases, the buildings are assumed to “survive" the flood.
This represents a conservative condition 1in that with Jless volume
available, higher flood depths will be predicted.

The upstream boundary condition was a specified inflow hydrograph
at Nodes 1,2,3, and 4. A second boundary condtion was the inflow through
the freeway underpass as a function of time. The DHM includes this flow
characteristic by using diffuston routing according to the width of the
underpass. That is, the topographic model accommodates this restricted
flow by using the appropriate hydraulic flow-width and Manning's friction
factor.

Results from the modeling of this situation by the DHM are given in
Figs. 4 and 5. The DHM predicted maximum flood depths of less than 1.5 m
(5 ft) for this area. 1In a previous flood plain study utitizing a stan-
dard one-dimensional model (HEC-2) the maximum flood plain depth was indi-
cated to be about 3 m (10 ft). Figure 6 compares the one-dimensional
(HEC~2) flood ptain and the DHM flood plain. The differences in predic-
tions by the two approaches are significant.

11. Conclusions
With the DHM, two-dimensional unsteady flow characteristics can be
evaluated over the study area rather than only at particular cross sec-



tions when using the traditional one-dimensional methods {(e.g., HEC-2)
typically utilized in engineering studies of flood plains.

Because the DHM provides a two-dimensfonal hydrodynamic response,
it etiminates the differences in predicted flood depths due to the choice
of cross-sections used in standard one-dimensional models. That is, modetl
users usually attempt to select cross-section perpendicular to the direc-
tion of flow, but in areas in which flows can spread laterally the cross
section selection becomas somewhat arbitrary for the 1-D model. Addition-
ally, the DHM accommodates both two-dimensional backwater and unsteady
flow effects, which are typically neglected in most flood plain studies
with steady-flow one-dimensional models. The DHM is straight-forward to
use and does not requre a level of expertise beyond that needed for appli-
cation of one-dimensional flooding modetls.
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