North Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Three Projection Planes (X-Y, Y-Z & Z-X Planes)

South Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Three Projection Planes (X-Y, Y-Z & Z-X Planes)
North Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere and } F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Four Projection Planes, Vector displacements from centroid: (0.,0.,-2.5), (0.,-2.5,0.), (-2.5,0.,0.), and (2.5,2.5,2.5)

South Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere and } F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Four Projection Planes, Vector displacements from centroid: (0.,0.,-2.5), (0.,-2.5,0.), (-2.5,0.,0.), and (2.5,2.5,2.5)
North Hemisphere Approximation of
F(x,y,z) = 100 on East Hemisphere and F(x,y,z) = 0 on West Hemisphere
With Five Projection Planes, Vector displacements from centroid: (0.0,-2.5), (0.0,-2.5,0.), (-2.5,0.0), (2.5,2.5,2.5) and (-2.5,2.5,-2.5)

South Hemisphere Approximation of
F(x,y,z) = 100 on East Hemisphere and F(x,y,z) = 0 on West Hemisphere
With Five Projection Planes, Vector displacements from centroid: (0.0,-2.5), (0.0,-2.5,0.), (-2.5,0.0), (2.5,2.5,2.5) and (-2.5,2.5,-2.5)
North Hemisphere Approximation of
\[F(x,y,z) = 100 \] on East Hemisphere
\[F(x,y,z) = 0 \] on West Hemisphere
With One Projection Plane (Y-Z Plane)

South Hemisphere Approximation of
\[F(x,y,z) = 100 \] on East Hemisphere
\[F(x,y,z) = 0 \] on West Hemisphere
With One Projection Plane (Y-Z Plane)
North Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Two Projection Planes (Y-Z & Z-X Planes)

South Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Two Projection Planes (Y-Z & Z-X Planes)
North Hemisphere Approximation of
$F(x,y,z) = 100$ on East Hemisphere
$F(x,y,z) = 0$ on West Hemisphere
With One Projection Plane (Z-X Plane)

South Hemisphere Approximation of
$F(x,y,z) = 100$ on East Hemisphere
$F(x,y,z) = 0$ on West Hemisphere
With One Projection Plane (Z-X Plane)
North Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With One Projection Plane (X-Y Plane)

South Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With One Projection Plane (X-Y Plane)
North Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Two Projection Planes (X-Y & Y-Z Planes)

South Hemisphere Approximation of
\[F(x,y,z) = 100 \text{ on East Hemisphere} \]
\[F(x,y,z) = 0 \text{ on West Hemisphere} \]
With Two Projection Planes (X-Y & Y-Z Planes)
North Hemisphere Approximation of
F(x,y,z) = 100 on East Hemisphere
F(x,y,z) = 0 on West Hemisphere
With Two Projection Planes (X-Y & Z-X Planes)

South Hemisphere Approximation of
F(x,y,z) = 100 on East Hemisphere
F(x,y,z) = 0 on West Hemisphere
With Two Projection Planes (X-Y & Z-X Planes)